Một hình bình hành có hai cạnh nằm trên hai đường thẳng \[x + 3y - 6 = 0\] và \[2x - 5y - 1 = 0\]. Tâm của hình bình hành là điểm \[I\left( {3;5} \right)\]. Viết phương trình hai cạnh còn lại.
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Ta có: \(\frac{1}{2} \ne \frac{3}{{ - 5}}\), do đó hai đường thẳng \[x + 3y - 6 = 0\] và \[2x - 5y - 1 = 0\] cắt nhau.
Giả sử hình bình hành \(ABCD\) có hai cạnh \[AB:x + 3y - 6 = 0\] và \[AD:2x - 5y - 1 = 0\].
Khi đó, tọa độ đỉnh \(A\) là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}x + 3y - 6 = 0\\2x - 5y - 1 = 0\end{array} \right. \Rightarrow A\left( {3;1} \right)\].
Vì tâm của hình bình hành là điểm \[I\left( {3;5} \right)\] nên \[I\] là trung điểm của \[AC\], do đó:
\[\left\{ \begin{array}{l}2{x_I} = {x_A} + {x_C}\\2{y_I} = {y_A} + {y_C}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6 = 3 + {x_C}\\10 = 1 + {y_C}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 3\\{y_C} = 9\end{array} \right.\]\[ \Rightarrow C\left( {3;9} \right)\].
Vì \[DC\,\,{\rm{//}}\,\,AB\] nên phương trình \[DC:x + 3y + n = 0\] \(\left( {n \ne - 6} \right)\).
\[C\left( {3;9} \right) \in DC \Rightarrow 3 + 27 + n = 0 \Rightarrow n = - 30\] (t/m).
\[ \Rightarrow \] Phương trình \[DC:x + 3y - 30 = 0\].
Vì \[BC\,\,{\rm{//}}\,AD\] nên phương trình \[BC:2x - 5y + m = 0\,\,\,\left( {m \ne - 1} \right)\].
\[C\left( {3;9} \right) \in BC \Rightarrow 6 - 45 + m = 0 \Rightarrow m = 39\] (t/m).
\[ \Rightarrow \] Phương trình \[BC:2x - 5y + 39 = 0\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
Cách chọn ra 5 học sinh sao cho có đủ nam, nữ và số học sinh nam ít hơn số học sinh nữ gồm các phương án sau:
Phương án 1: Chọn 1 nam và 4 nữ có \(C_{15}^1.C_{20}^4\).
Phương án 2: Chọn 2 nam và 3 nữ có \(C_{15}^2.C_{20}^3\).
Áp dụng quy tắc cộng, có tất cả \(C_{15}^1.C_{20}^4 + C_{15}^2.C_{20}^3 = 192\,\,375\) cách.
Câu 2
Lời giải
Đáp án đúng là: C
Cứ hai đội gặp nhau cho ta một trận đấu nên số trận đấu một lượt là \[C_{20}^2.\]
Số trận đấu hai lượt là \[C_{20}^2.2 = 380\] trận.
Câu 3
A. một hoán vị;
B. một chỉnh hợp;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.