Câu hỏi:

16/01/2026 38 Lưu

Một hội nghị có 10 đại biểu tham dự được xếp ngồi vào một ghế dài có 10 chỗ, mỗi người ngồi một chỗ, biết rằng trong đó có 3 đại biểu là \(A,\,B,\,C\). Có bao nhiêu cách xếp để \(A\) và \(B\) luôn ngồi cạnh nhau nhưng \(A\) và \(C\) không được ngồi cạnh nhau?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

- Xếp để \(A\) và \(B\) luôn ngồi cạnh nhau, ta có:

Coi \(AB\) như 1 phần tử, trường hợp này có 2 cách thỏa mãn là \(AB\) và \(BA\).

Ứng với 1 phần tử \(AB\) và 8 đại biểu còn lại có \(9!\) cách xếp.

Do đó có \(2.9!\) cách xếp.

- Xếp để \(A\) luôn ngồi cạnh cả \(B\) và \(C\) là:

Coi \(ABC\) như 1 phần tử, do đó có thể có 2 cách thỏa mãn là \(CAB\) và \(BAC\).

Ứng với 1 phần tử \(ABC\) và 7 đại biểu còn lại có \(8!\) cách xếp.

Do đó có \(2.8!\) cách xếp.

Vậy có \(2.9!\, - \,\,2.8! = 645\,\,120\) cách xếp thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 40;                        
B. 190;                          
C. 380;                       
D. 400.

Lời giải

Đáp án đúng là: C

Cứ hai đội gặp nhau cho ta một trận đấu nên số trận đấu một lượt là \[C_{20}^2.\]

Số trận đấu hai lượt là \[C_{20}^2.2 = 380\] trận.

Câu 2

A. \(\left( { - 1;\,\, - 2} \right)\);                        
B. \(\left( {1;\,2} \right)\);    
C. \(\left( { - 2;\,\,1} \right)\);         
D. \(\left( { - 1;\,\,2} \right)\).

Lời giải

Đáp án đúng là: D

Ta có: \(\overrightarrow {AB}  = \left( {5 - 1;\,\,4 - 2} \right) = \left( {4;\,\,2} \right)\) là một vectơ chỉ phương của đường thẳng \(AB\), nên \(\overrightarrow u  = \left( {2;\,\, - 4} \right)\) là một vectơ pháp tuyến của đường thẳng \(AB\).

Do đó, đường thẳng \(AB\) cũng có một vectơ chỉ phương là \(\overrightarrow {u'}  =  - \frac{1}{2}\overrightarrow u  =  - \frac{1}{2}\left( {2;\,\, - 4} \right) = \left( { - 1;\,\,2} \right)\).

Câu 3

A. 120;                      
B. 56;                            
C. 1 560;                    
D. 6 720.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP