Câu hỏi:

16/01/2026 40 Lưu

Xác định tất cả các giá trị của \(a\) để góc tạo bởi hai đường thẳng \({d_1}:3x + 4y - 2 = 0\) và \({d_2}:\left\{ \begin{array}{l}x = 9 + at\\y = 7 - 2t\end{array} \right.\) bằng \(45^\circ \).

A. \(a = 1,a =  - 14\);                                       

B. \(a = \frac{2}{7},a = 14\);        

C. \(a =  - 2,a =  - 14\);                                                                       
D. \(a = \frac{2}{7},a =  - 14\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Gọi \(\varphi \) là góc giữa hai đường thẳng đã cho.

Đường thẳng \({d_1}:3x + 4y - 2 = 0\) có một vectơ pháp tuyến  là \(\overrightarrow {{n_1}}  = \left( {3;\,4} \right)\).

Đường thẳng \({d_2}:\left\{ \begin{array}{l}x = 9 + at\\y = 7 - 2t\end{array} \right.\) có một vectơ chỉ phương là \(\overrightarrow {{u_2}}  = \left( {a;\,\, - 2} \right)\), do đó đường thẳng \({d_2}\) có một vectơ pháp tuyến là \(\overrightarrow {{n_2}}  = \left( {2;\,\,a} \right)\).

Ta có: \(\cos \varphi  = \left| {\cos \left( {\overrightarrow {{n_1}} ,\,\,\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_1}} } \right|}} = \frac{{\left| {3a - 8} \right|}}{{5\sqrt {{a^2} + 4} }}\)\( \Leftrightarrow \cos 45^\circ  = \frac{{\left| {3a - 8} \right|}}{{5\sqrt {{a^2} + 4} }}\)

\( \Leftrightarrow \frac{1}{{\sqrt 2 }} = \frac{{\left| {3a - 8} \right|}}{{5\sqrt {{a^2} + 4} }} \Leftrightarrow 5\sqrt {{a^2} + 4}  = \sqrt 2 \left| {3a - 8} \right|\)\( \Leftrightarrow 25{a^2} + 100 = 18{a^2} - 96a + 128\)

\( \Leftrightarrow 7{a^2} + 96a - 28 = 0 \Leftrightarrow \left[ \begin{array}{l}a =  - 14\\a = \frac{2}{7}\end{array} \right.\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 40;                        
B. 190;                          
C. 380;                       
D. 400.

Lời giải

Đáp án đúng là: C

Cứ hai đội gặp nhau cho ta một trận đấu nên số trận đấu một lượt là \[C_{20}^2.\]

Số trận đấu hai lượt là \[C_{20}^2.2 = 380\] trận.

Câu 2

A. \(\left( { - 1;\,\, - 2} \right)\);                        
B. \(\left( {1;\,2} \right)\);    
C. \(\left( { - 2;\,\,1} \right)\);         
D. \(\left( { - 1;\,\,2} \right)\).

Lời giải

Đáp án đúng là: D

Ta có: \(\overrightarrow {AB}  = \left( {5 - 1;\,\,4 - 2} \right) = \left( {4;\,\,2} \right)\) là một vectơ chỉ phương của đường thẳng \(AB\), nên \(\overrightarrow u  = \left( {2;\,\, - 4} \right)\) là một vectơ pháp tuyến của đường thẳng \(AB\).

Do đó, đường thẳng \(AB\) cũng có một vectơ chỉ phương là \(\overrightarrow {u'}  =  - \frac{1}{2}\overrightarrow u  =  - \frac{1}{2}\left( {2;\,\, - 4} \right) = \left( { - 1;\,\,2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 120;                      
B. 56;                            
C. 1 560;                    
D. 6 720.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP