Phần 1. Trắc nghiệm nhiều phương án lựa chọn
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Có bao nhiêu cách chọn ra 2 học sinh để bầu vào hai chức vụ tổ trưởng và tổ phó từ một tổ có 10 học sinh?
Phần 1. Trắc nghiệm nhiều phương án lựa chọn
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Có bao nhiêu cách chọn ra 2 học sinh để bầu vào hai chức vụ tổ trưởng và tổ phó từ một tổ có 10 học sinh?
Quảng cáo
Trả lời:
Lời giải
Số cách chọn là \(A_{10}^2\). Chọn C.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Sắp xếp 4 học sinh lớp 10, 11 có \(4! = 24\) cách.
Khi đó có 5 chỗ trống đứng đan xen 4 học sinh lớp 10, 11.
Sắp xếp 4 học sinh lớp 12 vào 5 chỗ trống có \(A_5^4 = 120\) cách.
Vậy có \(24 \cdot 120 = 2880\) cách.
Trả lời: 2880.
Câu 2
a) Có 24 số có ba chữ số khác nhau được tạo thành từ các chữ số 1; 2; 3; 4.
b) Có 40 số lẻ có ba chữ số khác nhau, được tạo thành từ các chữ số 0; 1; 2; 3; 4; 5.
c) Có 144 số tự nhiên có ba chữ số chia hết cho 5 được lập từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8.
Lời giải
Lời giải
a) Có \(A_4^3 = 24\) số có ba chữ số khác nhau được tạo thành từ các chữ số 1; 2; 3; 4.
b) Gọi số cần lập là \[\overline {abc} \].
Vì số cần lập là số lẻ nên \(c \in \left\{ {1;3;5} \right\}\). Có 3 cách chọn \(c\).
Có 4 cách chọn \(a\). Có 4 cách chọn \(b\).
Do đó có \(4 \cdot 4 \cdot 3 = 48\) số lẻ có ba chữ số khác nhau.
c) Gọi số cần lập là \[\overline {abc} \].
Số cần lập chia hết cho 5 nên \(c \in \left\{ {0;5} \right\}\) nên có 2 cách chọn \(c\).
Có 8 cách chọn \(a\). Có 9 cách chọn \(b\).
Suy ra có \(8 \cdot 9 \cdot 2 = 144\) số có ba chữ số chia hết cho 5 lập được từ các số trên.
d) Gọi số cần lập là \(\overline {abcd} \).
Số cần lập là số chẵn nên \(d \in \left\{ {0;2;4;6} \right\}\) nên có \(4\) cách chọn \(d\).
Có \(6\) cách chọn a.
Có 7 cách chọn \(b\).
Có 7 cạch chọn \(c\).
Suy ra có \(6 \cdot 7 \cdot 7 \cdot 4 = 1176\) số chẵn có 4 chữ số được lập từ các số trên.
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.