Câu hỏi:

02/01/2026 24 Lưu

Cho tam giác \(ABC\) biết \(H\left( {3;2} \right)\), \(G\left( {\frac{5}{3};\frac{8}{3}} \right)\) lần lượt là trực tâm và trọng tâm của tam giác, đường thẳng \(BC\) có phương trình \(x + 2y - 2 = 0\). Viết phương trình đường tròn ngoại tiếp tam giác \(ABC\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).

\( \Rightarrow \overrightarrow {HI}  = \frac{3}{2}\overrightarrow {HG}  \Rightarrow \left\{ \begin{array}{l}{x_I} - 3 = \frac{3}{2}\left( {\frac{5}{3} - 3} \right)\\{y_I} - 2 = \frac{3}{2}\left( {\frac{8}{3} - 2} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_I} = 1\\{y_I} = 3\end{array} \right. \Rightarrow I\left( {1;3} \right)\).

Gọi \(M\)là trung điểm của \(BC\) \( \Rightarrow IM \bot BC\) \( \Rightarrow IM:2x - y + c = 0\).

Vì \(I \in IM \Rightarrow 2.1 - 3 + c = 0 \Rightarrow c = 1\)

\( \Rightarrow IM:2x - y + 1 = 0\).

\(M = IM \cap BC \Rightarrow \left\{ \begin{array}{l}2x - y =  - 1\\x + 2y = 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 0\\y = 1\end{array} \right. \Rightarrow M\left( {0;1} \right)\).

Lại có: \(\overrightarrow {MA}  = 3\overrightarrow {MG}  \Rightarrow \left\{ \begin{array}{l}{x_A} = 3.\frac{5}{3}\\{y_A} - 1 = 3.\left( {\frac{8}{3} - 1} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} = 5\\{y_A} = 6\end{array} \right. \Rightarrow A\left( {5;6} \right)\)  .

Suy ra đường tròn ngoại tiếp tam giác \(ABC\) là đường tròn tâm \(I\left( {1;3} \right)\) có bán kính \(R = IA = 5\).

Vậy phương trình đường tròn ngoại tiếp tam giác \(ABC\) là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 25\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi độ dài chiều rộng của mảnh đất nuôi gà hay khoảng cách cần phải cắm cọc tới bờ tường là \(x\) (m) (minh họa như hình vẽ). \(\left( {0 < x < 15} \right)\)

Độ dài của chiều dài mảnh đất nuôi gà là: \(30 - 2x\) (m)

Diện tích mảnh đất nuôi gà là: \(S\left( x \right) = x\left( {30 - 2x} \right) =  - 2{x^2} + 30x\) (m2).

Để mảnh đất được rào chắn của bác có diện tích không nhỏ hơn \(50\,\,{{\rm{m}}^{\rm{2}}}\) thì:

\(S\left( x \right) =  - 2{x^2} + 30x \ge 50 \Leftrightarrow  - 2{x^2} + 30x - 50 \ge 0\) (*)

Xét tam thức bậc hai \(f\left( x \right) =  - 2{x^2} + 30x - 50\) có \(a =  - 2 < 0\)

\(\Delta ' = {15^2} - \left( { - 2} \right).\left( { - 50} \right) = 125\).

Do đó, \(f\left( x \right) = 0\) có hai nghiệm phân biệt:

\({x_1} = \frac{{ - 15 + \sqrt {125} }}{{\left( { - 2} \right)}} = \frac{{15 - 5\sqrt 5 }}{2} \approx 1,91\)

\({x_2} = \frac{{ - 15 + \sqrt {125} }}{{\left( { - 2} \right)}} = \frac{{15 + 5\sqrt 5 }}{2} \approx 13,09\)

Như vậy, bất phương trình (*) có tập nghiệm là đoạn \(\left[ {1,91;\,\,\,13,09} \right]\).

Vậy khoảng cách từ điểm cắm cọc đến bờ tường phải lớn hơn hoặc bằng 1,91 m và nhỏ hơn hoặc bằng 13,09 m thì mảnh đất được rào chắn của bác có diện tích không nhỏ hơn\(50\,\,{{\rm{m}}^{\rm{2}}}\).

Lời giải

Đáp án đúng là: A

Ta có: \(C \in Oy \Rightarrow C\left( {0;\,\,c} \right)\), \(G \in Ox \Rightarrow G\left( {g;\,\,0} \right)\).

Vì \(G\) là trọng tâm của tam giác \(ABC\) nên ta có: \(\left\{ \begin{array}{l}g = \frac{{1 + 5 + 0}}{3}\\0 = \frac{{\left( { - 1} \right) + \left( { - 3} \right) + c}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}g = 2\\c = 4\end{array} \right.\).

Vậy \(C\left( {0;\,\,4} \right)\).

Câu 3

A. \(\left( {6;0} \right)\);                                  
B. \(\left( {0; - 1} \right)\);   
C. \(\left( { - 8;\,\,11} \right)\);       
D. \(\left( {8;\,\,11} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({x^2} - 5{x^3} + 4 > 0\);                          

B. \({2^2}{x^2} + {3^2}{x^4} - 2 > 0\);

C. \({2^4}x + {x^2} - 1 > 0\);                            
D. \({x^2} + 2x - 1 \ge {x^2} - 2x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.\(x = 1\);                                                      

B.\(x = 2\);      

C. \(x = 3\);                                                      
D. Tất cả các đáp án trên đều sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP