Câu hỏi:

05/01/2026 12 Lưu

Cho tứ diện đều \(ABCD\) có cạnh bằng 1. Gọi \(M,N\) là hai điểm thay đổi lần lượt thuộc các cạnh \(AB;AC\) sao cho mặt phẳng \(\left( {DMN} \right)\) luôn vuông góc với mặt phẳng \(\left( {ABC} \right)\). Đặt \(AM = x;AN = y\). Tìm cặp số \(\left( {x;y} \right)\) để tam giác \(DMN\) có diện tích nhỏ nhất.

A. \(\left( {x;y} \right) = \left( {\frac{2}{3};\frac{2}{3}} \right)\).  
B. \(\left( {x;y} \right) = \left( {1;\frac{2}{3}} \right)\).               
C. \(\left( {x;y} \right) = \left( {\frac{2}{3};1} \right)\).       
D. \(\left( {x;y} \right) = \left( {1;1} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là A

Phương pháp giải

Sử dụng bất đẳng thức

Lời giải

Cho tứ diện đều ABCD có cạnh bằng 1. Gọi M,N là hai điểm thay đổi lần lượt thuộc các cạnh AB;AC (ảnh 1)

Gọi \(O\) là tâm đường tròn ngoại tiếp của tam giác đều \(ABC\). Do \(ABCD\) là tứ diện đều nên \(DO \bot \left( {ABC} \right)\). Theo đề bài, mặt phẳng \(\left( {DMN} \right) \bot \left( {ABC} \right)\) nên suy ra \(O \in MN\).

Tam giác \(DMN\)\(DO \bot MN\) nên \({S_{\Delta DMN}} = \frac{1}{2}DO.MN\). Mà \(DO\) là hằng số nên \({S_{\Delta DMN}}\) lớn nhất khi \(MN\) lớn nhất, nhỏ nhất khi \(MN\) nhỏ nhất.

Áp dụng định lí cosin trong tam giác \(AMN\) ta có \(M{N^2} = {x^2} + {y^2} - xy = {(x + y)^2} - 3xy\).

Như vậy \(M,N\) thay đổi sao cho đoạn thẳng \(MN\) luôn đi qua \(O\). Ta có \(0 < x,y \le 1\).

Ta có \(\overrightarrow {MN} = \overrightarrow {AN} - \overrightarrow {AM} = y\overrightarrow {AC} - x\overrightarrow {AB} \), \(\overrightarrow {MO} = \overrightarrow {AO} - \overrightarrow {AM} = \frac{2}{3}\overrightarrow {AH} - x\overrightarrow {AB} = \left( {\frac{1}{3} - x} \right)\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \).

\(\overrightarrow {MN} \)\(\overrightarrow {MO} \) cùng hướng nên \(\frac{{\frac{1}{3}}}{y} = \frac{{\frac{1}{3} - x}}{{ - x}} > 0 \Leftrightarrow y\left( {\frac{1}{3} - x} \right) = - \frac{1}{3}x \Leftrightarrow 3xy = x + y\) .   

Từ \(0 < x,y \le 1\), ta có \(x + y = 3xy \Leftrightarrow \frac{1}{x} + \frac{1}{y} = 3 \Leftrightarrow \frac{1}{x} = 3 - \frac{1}{y} \Rightarrow \frac{1}{x} \le 2 \Leftrightarrow x \ge \frac{1}{2}\)

Ta có \(M{N^2} = {(x + y)^2} - \left( {x + y} \right)\).

Đặt \(t = x + y\). Ta có \(t = x + \frac{x}{{3x - 1}}\) với \(x \in \left[ {\frac{1}{2};1} \right],t'\left( x \right) = \frac{{3x\left( {3x - 2} \right)}}{{{{(3x - 1)}^2}}}\).

Vẽ bảng biến thiên và từ bảng biến thiên, ta có \(\frac{4}{3} \le t \le \frac{3}{2}\).

Ta có \(M{N^2} = f\left( t \right) = {t^2} - t\). Khảo sát sự biến thiên của hàm \(f\left( t \right)\) trên đoạn \(\left[ {\frac{4}{3};\frac{3}{2}} \right]\) ta được\(MN{\rm{min}} \Leftrightarrow t = \frac{4}{3} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = \frac{2}{3}}\\{y = \frac{2}{3}}\end{array}} \right.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(1) 2640

Đáp án đúng là "2640"

Phương pháp giải

Tính giá trị nhỏ nhất

Lời giải

Gọi \(x,y\) lần lượt là chiều rộng và chiều dài của đáy hình hộp.

Điều kiện: \(x > 0;y > 0\left( m \right)\).

Ta có thể tích của khối hộp: \(V = 1xy = 400 \Rightarrow xy = 400 \Rightarrow y = \frac{{400}}{x}\left( {{m^3}} \right)\).

Diện tích mặt đáy: \({S_d} = xy = x.\frac{{400}}{x} = 400\left( {{{\rm{m}}^2}} \right)\).

Giá tiền để làm mặt đáy là: \(400.4000000 = {16.10^8}\) (đồng).

Diện tích xung quanh của bể cá: \({S_{xq}} = 2.x.1 + 2.y.1 = 2.\left( {x + y} \right) = 2.\left( {x + \frac{{400}}{x}} \right)\).

Giá tiền để làm mặt bên là: \(2.\left( {x + \frac{{400}}{x}} \right).3000000 = {6.10^6}.\left( {x + \frac{{400}}{x}} \right)\).

Tổng chi phí để xây dựng bể cá là:

\(T\left( x \right) = {6.10^6}.\left( {x + \frac{{400}}{x}} \right) + {24.10^8} \ge {6.10^6}.2\sqrt {x.\frac{{400}}{x}}  + {24.10^8} \approx 2640{\rm{\;}}\) (triệu đồng).

Câu 2

A. \({u_n} = 2025 + \frac{{\left( {n + 2} \right)\left( {n + 1} \right)}}{2}\).    
B. \({u_n} = 2025 + \frac{{n\left( {n + 1} \right)}}{2}\).
C. \({u_n} = 2025 + \frac{{n\left( {n - 1} \right)}}{2}\)
D. \({u_n} = \frac{{n\left( {n - 1} \right)}}{2}\).

Lời giải

Đáp án đúng là C

Phương pháp giải

Tìm số hạng tổng quát của dãy số.

Lời giải

Ta có \(\left\{ {\begin{array}{*{20}{l}}{{u_1} = 2025}\\{{u_{n + 1}} = {u_n} + n\left( {\forall n \in {\mathbb{N}^{\rm{*}}}} \right)}\end{array}} \right.\)

Suy ra

\({u_2} = {u_1} + 1\);

\({u_3} = {u_2} + 2\);

\({u_4} = {u_3} + 3\);

...

\({u_n} = {u_{n - 1}} + n - 1\)

Cộng vế theo vế ta có

\({u_2} + {u_3} + {u_4} + \ldots + {u_n} = {u_1} + {u_2} + {u_3} + \ldots + {u_{n - 1}} + 1 + 2 + 3 + \ldots + \left( {n - 1} \right)\)

\( \Leftrightarrow {u_n} = {u_1} + 1 + 2 + 3 + \ldots + \left( {n - 1} \right) \Leftrightarrow {u_n} = 2025 + \frac{{n\left( {n - 1} \right)}}{2}\).

Câu 3

A. 2,5.     
B. 3.         
C. 1.                   
D. 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP