Cho hàm số bậc ba \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ dưới đây
Cho hàm số bậc ba \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ dưới đây

Giá trị lớn nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {0;3} \right]\) bằng
Quảng cáo
Trả lời:
Đáp án đúng là A
Phương pháp giải
Nhận dạng đồ thị hàm số.
Lời giải
Điểm cao nhất của độ thị trên đoạn \(\left[ {0;3} \right]\) là \(y = 2,5\)
![Giá trị lớn nhất của hàm số f(x) trên đoạn [ {0;3] bằng (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/blobid9-1767597354.png)
Câu hỏi cùng đoạn
Câu 2:
Số nghiệm thuộc khoảng \(\left( {0;2\pi } \right)\) của phương trình \(2f\left( {{\rm{sin}}\left( x \right)} \right) - 5 = 0\) bằng
Đáp án đúng là C
Phương pháp giải
Tương giao đồ thị
Lời giải
Ta có \(f\left( {{\rm{sin}}\left( x \right)} \right) = 2,5 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{\rm{sin}}\left( x \right) = 1}\\{{\rm{sin}}\left( x \right) = a > 3\left( L \right)}\end{array}} \right.\)
Suy ra \({\rm{sin}}\left( x \right) = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi \)
Vậy có 1 nghiệm \(x = \frac{\pi }{2}\) thuộc khoảng \(\left( {0;2\pi } \right)\)
Câu 3:
Có bao nhiêu số nguyên \(m\) thuộc đoạn \([0;2025\) ] để hàm số \(g\left( x \right) = f\left( {{x^3} - 3{x^2} + m} \right)\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\)?
Đáp án đúng là A
Phương pháp giải
Xác định khoảng biến thiên của hàm hợp.
Lời giải
Ta có \(g'\left( x \right) = \left( {3{x^2} - 6x} \right)f'\left( {{x^3} - 3x + m} \right)\).
Với mọi \(x \in \left( {2; + \infty } \right)\) ta có \(3{x^2} - 6x > 0\) nên để hàm số \(g\left( x \right) = f\left( {{x^3} - 3{x^2} + m} \right)\) đồng biến trên khoảng \(\left( {2; + \infty } \right) \Leftrightarrow f'\left( {{x^3} - 3{x^2} + m} \right) \ge 0,\forall x \in \left( {2; + \infty } \right)\).
Dựa vào đồ thị ta có hàm số \(y = f\left( x \right)\) đồng biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {3; + \infty } \right)\) nên \(f'\left( x \right) \ge 0\) với \(x \in \left( { - \infty ;1\left] \cup \right[3; + \infty } \right)\).
Do đó: \(f'\left( {{x^3} - 3{x^2} + m} \right) \ge 0,\forall x \in \left( {2; + \infty } \right) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x^3} - 3{x^2} + m \le 1,\forall x \in \left( {2; + \infty } \right)}\\{{x^3} - 3{x^2} + m \ge 3,\forall x \in \left( {2; + \infty } \right)}\end{array}} \right.\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m \le - {x^3} + 3{x^2} + 1,\forall x \in \left( {2; + \infty } \right)}\\{m \ge - {x^3} + 3{x^2} + 3,\forall x \in \left( {2; + \infty } \right)}\end{array}} \right.\)
Nhận thấy nên trường hợp \(m \le - {x^3} + 3{x^2} + 1,\forall x \in \left( {2; + \infty } \right)\) không xảy ra.
Trường hợp: \(m \ge - {x^3} + 3{x^2} + 3,\forall x \in \left( {2; + \infty } \right)\). Ta có hàm số \(h\left( x \right) = - {x^3} + 3{x^2} + 3\) liên tục trên \(\left[ {2; + \infty } \right)\)
và \(h'\left( x \right) = - 3{x^2} + 6x < 0,\forall x \in \left( {2; + \infty } \right)\) nên \(h\left( x \right)\) nghịch biến trên \(\left[ {2; + \infty } \right)\) suy ra .

Vậy có 2019 số nguyên \(m\) thỏa mãn yêu cầu bài toán.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là "2640"
Phương pháp giải
Tính giá trị nhỏ nhất
Lời giải
Gọi \(x,y\) lần lượt là chiều rộng và chiều dài của đáy hình hộp.
Điều kiện: \(x > 0;y > 0\left( m \right)\).
Ta có thể tích của khối hộp: \(V = 1xy = 400 \Rightarrow xy = 400 \Rightarrow y = \frac{{400}}{x}\left( {{m^3}} \right)\).
Diện tích mặt đáy: \({S_d} = xy = x.\frac{{400}}{x} = 400\left( {{{\rm{m}}^2}} \right)\).
Giá tiền để làm mặt đáy là: \(400.4000000 = {16.10^8}\) (đồng).
Diện tích xung quanh của bể cá: \({S_{xq}} = 2.x.1 + 2.y.1 = 2.\left( {x + y} \right) = 2.\left( {x + \frac{{400}}{x}} \right)\).
Giá tiền để làm mặt bên là: \(2.\left( {x + \frac{{400}}{x}} \right).3000000 = {6.10^6}.\left( {x + \frac{{400}}{x}} \right)\).
Tổng chi phí để xây dựng bể cá là:
\(T\left( x \right) = {6.10^6}.\left( {x + \frac{{400}}{x}} \right) + {24.10^8} \ge {6.10^6}.2\sqrt {x.\frac{{400}}{x}} + {24.10^8} \approx 2640{\rm{\;}}\) (triệu đồng).
Câu 2
Lời giải
Đáp án đúng là C
Phương pháp giải
Tìm số hạng tổng quát của dãy số.
Lời giải
Ta có \(\left\{ {\begin{array}{*{20}{l}}{{u_1} = 2025}\\{{u_{n + 1}} = {u_n} + n\left( {\forall n \in {\mathbb{N}^{\rm{*}}}} \right)}\end{array}} \right.\)
Suy ra
\({u_2} = {u_1} + 1\);
\({u_3} = {u_2} + 2\);
\({u_4} = {u_3} + 3\);
...
\({u_n} = {u_{n - 1}} + n - 1\)
Cộng vế theo vế ta có
\({u_2} + {u_3} + {u_4} + \ldots + {u_n} = {u_1} + {u_2} + {u_3} + \ldots + {u_{n - 1}} + 1 + 2 + 3 + \ldots + \left( {n - 1} \right)\)
\( \Leftrightarrow {u_n} = {u_1} + 1 + 2 + 3 + \ldots + \left( {n - 1} \right) \Leftrightarrow {u_n} = 2025 + \frac{{n\left( {n - 1} \right)}}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

