Câu hỏi:

05/01/2026 107 Lưu

Cho hàm số bậc ba \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ dưới đây

Giá trị lớn nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {0;3} \right]\) bằng

A. 2,5.     
B. 3.         
C. 1.                   
D. 0.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là A

Phương pháp giải

Nhận dạng đồ thị hàm số.

Lời giải

Điểm cao nhất của độ thị trên đoạn \(\left[ {0;3} \right]\)\(y = 2,5\)

Giá trị lớn nhất của hàm số f(x)  trên đoạn [ {0;3] bằng (ảnh 1)

Câu hỏi cùng đoạn

Câu 2:

Số nghiệm thuộc khoảng \(\left( {0;2\pi } \right)\) của phương trình \(2f\left( {{\rm{sin}}\left( x \right)} \right) - 5 = 0\) bằng

  A. 0.     
B. 2.    
C. 1.    
D. 3.

Xem lời giải

verified Giải bởi Vietjack

Đáp án đúng là C

Phương pháp giải

Tương giao đồ thị

Lời giải

Ta có \(f\left( {{\rm{sin}}\left( x \right)} \right) = 2,5 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{\rm{sin}}\left( x \right) = 1}\\{{\rm{sin}}\left( x \right) = a > 3\left( L \right)}\end{array}} \right.\)

Suy ra \({\rm{sin}}\left( x \right) = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi \)

Vậy có 1 nghiệm \(x = \frac{\pi }{2}\) thuộc khoảng \(\left( {0;2\pi } \right)\)

Câu 3:

Có bao nhiêu số nguyên \(m\) thuộc đoạn \([0;2025\) ] để hàm số \(g\left( x \right) = f\left( {{x^3} - 3{x^2} + m} \right)\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\)?

A. 2019.     
B. 2021.      
C. 2023.         
D. 2025.

Xem lời giải

verified Giải bởi Vietjack

Đáp án đúng là A

Phương pháp giải

Xác định khoảng biến thiên của hàm hợp.

Lời giải

Ta có \(g'\left( x \right) = \left( {3{x^2} - 6x} \right)f'\left( {{x^3} - 3x + m} \right)\).

Với mọi \(x \in \left( {2; + \infty } \right)\) ta có \(3{x^2} - 6x > 0\) nên để hàm số \(g\left( x \right) = f\left( {{x^3} - 3{x^2} + m} \right)\) đồng biến trên khoảng \(\left( {2; + \infty } \right) \Leftrightarrow f'\left( {{x^3} - 3{x^2} + m} \right) \ge 0,\forall x \in \left( {2; + \infty } \right)\).

Dựa vào đồ thị ta có hàm số \(y = f\left( x \right)\) đồng biến trên các khoảng \(\left( { - \infty ;1} \right)\)\(\left( {3; + \infty } \right)\) nên \(f'\left( x \right) \ge 0\) với \(x \in \left( { - \infty ;1\left] \cup \right[3; + \infty } \right)\).

Do đó: \(f'\left( {{x^3} - 3{x^2} + m} \right) \ge 0,\forall x \in \left( {2; + \infty } \right) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x^3} - 3{x^2} + m \le 1,\forall x \in \left( {2; + \infty } \right)}\\{{x^3} - 3{x^2} + m \ge 3,\forall x \in \left( {2; + \infty } \right)}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m \le - {x^3} + 3{x^2} + 1,\forall x \in \left( {2; + \infty } \right)}\\{m \ge - {x^3} + 3{x^2} + 3,\forall x \in \left( {2; + \infty } \right)}\end{array}} \right.\)

Nhận thấy nên trường hợp \(m \le - {x^3} + 3{x^2} + 1,\forall x \in \left( {2; + \infty } \right)\) không xảy ra.

Trường hợp: \(m \ge - {x^3} + 3{x^2} + 3,\forall x \in \left( {2; + \infty } \right)\). Ta có hàm số \(h\left( x \right) = - {x^3} + 3{x^2} + 3\) liên tục trên \(\left[ {2; + \infty } \right)\)

\(h'\left( x \right) = - 3{x^2} + 6x < 0,\forall x \in \left( {2; + \infty } \right)\) nên \(h\left( x \right)\) nghịch biến trên \(\left[ {2; + \infty } \right)\) suy ra .

Có bao nhiêu số nguyên  m thuộc đoạn 0;2025 để hàm số  (ảnh 1)

Vậy có 2019 số nguyên \(m\) thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Đường hàng không có cự li vận chuyển trung bình dài nhất.
B. Đường biển có cự li vận chuyển trung bình nhỏ hơn đường sông.

C. Đường sắt có cự li vận chuyển trung bình nhỏ hơn đường bộ.

D. Đường hàng không có cự li vận chuyển trung bình ngắn nhất.

Lời giải

Đáp án đúng là A

Phương pháp giải

Nhận xét bảng số liệu.

Lời giải

- Công thức:

Cự li vận chuyển trung bình = Khối lượng luân chuyển/Khối lượng vận chuyển.

- Dựa vào công thức tính trên, ta có bảng số liệu sau:

Cự li vận chuyển hàng hóa trung bình phân theo ngành vận tải của nước ta năm 2021

Cho bảng số liệu về khối lượng hàng hóa vận chuyển và khối lượng hàng hóa luân chuyển của nước ta phân theo ngành vận tải năm 2021: (ảnh 2)

=> Đường hàng không có cự li vận chuyển trung bình dài nhất là nhận xét đúng.

Lời giải

Đáp án đúng là A

Phương pháp giải

Xác suất toàn phần.

Lời giải

Gọi A là biến cố "Giáo viên chọn được bạn lớp trưởng là nam"

B là biến cố "Giáo viên chọn được bạn lớp phó là nữ"

Khi đó ta có \(P\left( A \right) = \frac{{24}}{{44}} = \frac{6}{{11}} \Rightarrow P\left( {\overline A } \right) = \frac{5}{{11}}\).

Nếu giáo viên chọn bạn lớp trưởng là nam thì sau đó còn lại 43 bạn học sinh, trong đó có 20 học sinh nữ \( \Rightarrow P\left( {B\mid A} \right) = \frac{{20}}{{43}}\).

Nếu giáo viên chọn bạn lớp trưởng là nữ thì sau đó còn lại 43 học sinh, trong đó có 19 học sinh nữ \( \Rightarrow P\left( {B\mid \overline A } \right) = \frac{{19}}{{43}}\).

Theo công thức xác suất toàn phần, xác suất giáo viên chọn lớp phó là học sinh nữ là:

\(P\left( B \right) = P\left( A \right).P\left( {BA} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = \frac{6}{{11}}.\frac{{20}}{{43}} + \frac{5}{{11}}.\frac{{19}}{{43}} = \frac{5}{{11}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Gia tăng tự nhiên thấp.     
B. Nhóm tuổi trên 65 tăng.

C. Tuổi thọ trung bình cao.   

D. Cơ cấu dân số còn trẻ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP