Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\) tâm \(I\left( {1; - 2;1} \right)\); bán kính \(R = 4\) và đường thẳng \(d:\frac{x}{2} = \frac{{y - 1}}{{ - 2}} = \frac{{z + 1}}{{ - 1}}\). Mặt phẳng \(\left( P \right)\) chứa \(d\) và cắt mặt cầu \(\left( S \right)\) theo một đường tròn có diện tích nhỏ nhất. Hỏi trong các điểm sau điểm nào có khoảng cách đến mặt phẳng \(\left( P \right)\) lớn nhất.
Quảng cáo
Trả lời:
Đáp án đúng là A
Phương pháp giải
Lời giải
Gọi \(H\left( {2t;1 - 2t; - 1 - t} \right)\) là hình chiếu của \(I\) lên đường thẳng \(d\).
Ta có: \(\overrightarrow {IH} .\overrightarrow {{u_d}} = 0 \Rightarrow 2\left( {2t - 1} \right) - 2\left( {3 - 2t} \right) - \left( { - 2 - t} \right) = 0 \Leftrightarrow t = \frac{2}{3} \Rightarrow H\left( {\frac{4}{3}; - \frac{1}{3}; - \frac{5}{3}} \right)\).
Vì \(IH = \sqrt {10} < 4 = R \Rightarrow d\) cắt mặt cầu \(\left( S \right)\) tại 2 điểm phân biệt.
Mặt phẳng \(\left( Q \right)\) bất kì chứa \(d\) luôn cắt \(\left( S \right)\) theo một đường tròn bán kính \(r\).
Khi đó \({r^2} = {R^2} - {d^2}\left( {I,\left( Q \right)} \right) \ge {R^2} - {d^2}\left( {I,d} \right) = 16 - 10 = 6\).
Do vậy mặt phẳng \(\left( P \right)\) chứa \(d\) cắt mặt cầu theo một đường tròn có diện tích nhỏ nhất khi và chỉ khi \(d\left( {I,\left( P \right)} \right) = d\left( {I,d} \right)\) hay mặt phẳng \(\left( P \right)\) đi qua \(H\) nhận \(\overrightarrow {IH} = \left( {\frac{1}{3};\frac{5}{3}; - \frac{8}{3}} \right)\) làm vectơ pháp tuyến, do đó \(\left( P \right)\) có phương trình \(x + 5y - 8z - 13 = 0\).
Khi đó điểm \(O\left( {0;0;0} \right)\) có khoảng cách đến \(\left( P \right)\) lớn nhất.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
C. Đường sắt có cự li vận chuyển trung bình nhỏ hơn đường bộ.
Lời giải
Đáp án đúng là A
Phương pháp giải
Nhận xét bảng số liệu.
Lời giải
- Công thức:
Cự li vận chuyển trung bình = Khối lượng luân chuyển/Khối lượng vận chuyển.
- Dựa vào công thức tính trên, ta có bảng số liệu sau:
Cự li vận chuyển hàng hóa trung bình phân theo ngành vận tải của nước ta năm 2021

=> Đường hàng không có cự li vận chuyển trung bình dài nhất là nhận xét đúng.
Câu 2
Lời giải
Đáp án đúng là A
Phương pháp giải
Xác suất toàn phần.
Lời giải
Gọi A là biến cố "Giáo viên chọn được bạn lớp trưởng là nam"
B là biến cố "Giáo viên chọn được bạn lớp phó là nữ"
Khi đó ta có \(P\left( A \right) = \frac{{24}}{{44}} = \frac{6}{{11}} \Rightarrow P\left( {\overline A } \right) = \frac{5}{{11}}\).
Nếu giáo viên chọn bạn lớp trưởng là nam thì sau đó còn lại 43 bạn học sinh, trong đó có 20 học sinh nữ \( \Rightarrow P\left( {B\mid A} \right) = \frac{{20}}{{43}}\).
Nếu giáo viên chọn bạn lớp trưởng là nữ thì sau đó còn lại 43 học sinh, trong đó có 19 học sinh nữ \( \Rightarrow P\left( {B\mid \overline A } \right) = \frac{{19}}{{43}}\).
Theo công thức xác suất toàn phần, xác suất giáo viên chọn lớp phó là học sinh nữ là:
\(P\left( B \right) = P\left( A \right).P\left( {BA} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = \frac{6}{{11}}.\frac{{20}}{{43}} + \frac{5}{{11}}.\frac{{19}}{{43}} = \frac{5}{{11}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
C. Tuổi thọ trung bình cao.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



