Câu hỏi:

05/01/2026 6 Lưu

Đọc đoạn trích và trả lời câu hỏi dưới đây.

     Đời chúng ta đã nằm trong vòng chữ tôi. Mất bề rộng ta đi tìm bề sâu. Nhưng càng đi sâu càng lạnh. Ta thoát lên tiên cùng Thế Lữ, ta phiêu lưu trong trường tình cùng Lưu Trọng Lư, ta điên cuồng với Hàn Mặc Tử, Chế Lan Viên, ta đắm say cùng Xuân Diệu. Nhưng động tiên đã khép, tình yêu không bền, điên cuồng rồi tỉnh, say đắm vẫn bơ vơ. Ta ngơ ngẩn buồn trở về hồn ta cùng Huy Cận.

     Cả trời thực, trời mộng vẫn nao nao theo hồn ta.

(Hoài Thanh - Hoài Chân, Thi nhân Việt Nam, NXB Văn học, Hà Nội, 2023)

Trong cụm từ “say đắm vẫn bơ vơ ”, Hoài Thanh chỉ nhà thơ nào?

A. Hàn Mặc Tử      
B. Xuân Diệu   
C. Lưu Trọng Lư      
D. Huy Cận

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là B

Phương pháp giải

Căn cứ vào nội dung đoạn trích.

Dạng bài đọc hiểu văn bản văn học - Câu hỏi đơn

Lời giải

Trong đoạn văn, nhà phê bình Hoài Thanh đã sử dụng từ “đắm say” ở câu trước dành cho Xuân Diệu “ta đắm say cùng Xuân Diệu”. Đặc biệt xét đến phong cách nghệ thuật của Xuân Diệu có thể thấy vô cùng chính xác, thơ Xuân Diệu nồng nhiệt, đắm say tới vô cùng nhưng vì mặc cảm mà luôn không thoát khỏi sự lạc lõng, cô đơn, bơ vơ của một tâm hồn yêu đến điên dại.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(1) 2640

Đáp án đúng là "2640"

Phương pháp giải

Tính giá trị nhỏ nhất

Lời giải

Gọi \(x,y\) lần lượt là chiều rộng và chiều dài của đáy hình hộp.

Điều kiện: \(x > 0;y > 0\left( m \right)\).

Ta có thể tích của khối hộp: \(V = 1xy = 400 \Rightarrow xy = 400 \Rightarrow y = \frac{{400}}{x}\left( {{m^3}} \right)\).

Diện tích mặt đáy: \({S_d} = xy = x.\frac{{400}}{x} = 400\left( {{{\rm{m}}^2}} \right)\).

Giá tiền để làm mặt đáy là: \(400.4000000 = {16.10^8}\) (đồng).

Diện tích xung quanh của bể cá: \({S_{xq}} = 2.x.1 + 2.y.1 = 2.\left( {x + y} \right) = 2.\left( {x + \frac{{400}}{x}} \right)\).

Giá tiền để làm mặt bên là: \(2.\left( {x + \frac{{400}}{x}} \right).3000000 = {6.10^6}.\left( {x + \frac{{400}}{x}} \right)\).

Tổng chi phí để xây dựng bể cá là:

\(T\left( x \right) = {6.10^6}.\left( {x + \frac{{400}}{x}} \right) + {24.10^8} \ge {6.10^6}.2\sqrt {x.\frac{{400}}{x}}  + {24.10^8} \approx 2640{\rm{\;}}\) (triệu đồng).

Câu 2

A. \({u_n} = 2025 + \frac{{\left( {n + 2} \right)\left( {n + 1} \right)}}{2}\).    
B. \({u_n} = 2025 + \frac{{n\left( {n + 1} \right)}}{2}\).
C. \({u_n} = 2025 + \frac{{n\left( {n - 1} \right)}}{2}\)
D. \({u_n} = \frac{{n\left( {n - 1} \right)}}{2}\).

Lời giải

Đáp án đúng là C

Phương pháp giải

Tìm số hạng tổng quát của dãy số.

Lời giải

Ta có \(\left\{ {\begin{array}{*{20}{l}}{{u_1} = 2025}\\{{u_{n + 1}} = {u_n} + n\left( {\forall n \in {\mathbb{N}^{\rm{*}}}} \right)}\end{array}} \right.\)

Suy ra

\({u_2} = {u_1} + 1\);

\({u_3} = {u_2} + 2\);

\({u_4} = {u_3} + 3\);

...

\({u_n} = {u_{n - 1}} + n - 1\)

Cộng vế theo vế ta có

\({u_2} + {u_3} + {u_4} + \ldots + {u_n} = {u_1} + {u_2} + {u_3} + \ldots + {u_{n - 1}} + 1 + 2 + 3 + \ldots + \left( {n - 1} \right)\)

\( \Leftrightarrow {u_n} = {u_1} + 1 + 2 + 3 + \ldots + \left( {n - 1} \right) \Leftrightarrow {u_n} = 2025 + \frac{{n\left( {n - 1} \right)}}{2}\).

Câu 3

A. 2,5.     
B. 3.         
C. 1.                   
D. 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP