Câu hỏi:

05/01/2026 6 Lưu

Hai nguồn kết hợp A, B cùng pha, cùng biên độ, cách nhau 40 cm. Khoảng cách giữa hai điểm dao động với biên độ cực đại gần nhau nhất trên đoạn AB là 0,8 cm. Điểm M thuộc miền giao thoa cách nguồn A một đoạn 25cm và cách nguồn B một đoạn 22cm. Dịch chuyển nguồn B từ từ dọc theo phương AB ra xa nguồn B đoạn 10 cm thì số lần điểm M chuyển thành điểm dao động với biên độ cực đại là:

A. 6 lần            
B. 8 lần                   
C. 7 lần     
D. 5 lần

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là D

Phương pháp giải

Xác định bước sóng của sóng.

Sử dụng điều kiện để phần tử dao động cực đại: \({d_1} - {d_2} = k\lambda \)

Lời giải

Khoảng cách giữa hai điểm dao động với biên độ cực đại gần nhau nhất trên đoạn AB là 0,8 cm

\( \Rightarrow \frac{\lambda }{2} = 0,8 \Rightarrow \lambda = 1,6\,({\rm{cm}})\)

Ta có hình ảnh minh họa:

Hai nguồn kết hợp A, B cùng pha, cùng biên độ, cách nhau 40 cm (ảnh 1)

Từ hình ta có: \(\cos \beta = \frac{{A{M^2} + {{\left( {A{B_1}} \right)}^2} - {{\left( {M{B_1}} \right)}^2}}}{{2AM.A{B_1}}} = \frac{{{{25}^2} + {{40}^2} - {{22}^2}}}{{2.25.40}} = 0,8705\)

Xét trong tam giác \(AM{B_2}\) ta có:

\(M{B_2} = \sqrt {A{M^2} + {{\left( {A{B_2}} \right)}^2} - 2AM.A{B_2}.\cos \beta } = \sqrt {{{25}^2} + {{50}^5} - 2.25.50.0,8705} = 30,8(\;{\rm{cm}})\)

Điểm \(M\) thuộc cực đại khi: \({d_{1M}} - {d_{2M}} = k\lambda = 1,6k\)

Mặt khác: \(\left\{ {\begin{array}{*{20}{l}}{\Delta {d_{M - 1}} = AM - M{B_1} = 25 - 22 = 3\;{\rm{cm}}}\\{\Delta {d_{M - 2}} = AM - M{B_2} = 25 - 30,8 = - 5,8\;{\rm{cm}}}\end{array}} \right.\)

\( \Rightarrow - 5,8 \le 1,6k \le 3\)

\( \Rightarrow - 3,6 \le k \le 1,8\)

\( \Rightarrow k = - 3; - 2; - 1;0;1\)

Vậy có 5 giá trị của k thỏa mãn hay điểm M sẽ chuyển thành điểm dao động cực đại 5 lần.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là "2640"

Phương pháp giải

Tính giá trị nhỏ nhất

Lời giải

Gọi \(x,y\) lần lượt là chiều rộng và chiều dài của đáy hình hộp.

Điều kiện: \(x > 0;y > 0\left( m \right)\).

Ta có thể tích của khối hộp: \(V = 1xy = 400 \Rightarrow xy = 400 \Rightarrow y = \frac{{400}}{x}\left( {{m^3}} \right)\).

Diện tích mặt đáy: \({S_d} = xy = x.\frac{{400}}{x} = 400\left( {{{\rm{m}}^2}} \right)\).

Giá tiền để làm mặt đáy là: \(400.4000000 = {16.10^8}\) (đồng).

Diện tích xung quanh của bể cá: \({S_{xq}} = 2.x.1 + 2.y.1 = 2.\left( {x + y} \right) = 2.\left( {x + \frac{{400}}{x}} \right)\).

Giá tiền để làm mặt bên là: \(2.\left( {x + \frac{{400}}{x}} \right).3000000 = {6.10^6}.\left( {x + \frac{{400}}{x}} \right)\).

Tổng chi phí để xây dựng bể cá là:

\(T\left( x \right) = {6.10^6}.\left( {x + \frac{{400}}{x}} \right) + {24.10^8} \ge {6.10^6}.2\sqrt {x.\frac{{400}}{x}}  + {24.10^8} \approx 2640{\rm{\;}}\) (triệu đồng).

Câu 2

A. 2,5.     
B. 3.         
C. 1.                   
D. 0.

Lời giải

Đáp án đúng là A

Phương pháp giải

Nhận dạng đồ thị hàm số.

Lời giải

Điểm cao nhất của độ thị trên đoạn \(\left[ {0;3} \right]\)\(y = 2,5\)

Giá trị lớn nhất của hàm số f(x)  trên đoạn [ {0;3] bằng (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Giọng điệu nhẹ nhàng nhưng buồn thương day dứt.
B. Giọng điệu đôn hậu, ấm áp, chân tình.
C. Giọng điệu thủ thỉ tâm tình, đằm thắm và giàu tính nhân văn.
D. Giọng điệu thiết tha và gợi mở trong tâm hồn người đọc những rung động êm dịu tinh tế.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Lí giải nguyên nhân Hà nội trở nên đông đúc sau khi chiến tranh kết thúc.
B. Tình trạng khó khăn trong việc quản lý dân cư và các tội phạm phát sinh do sự gia tăng dân số.
C. Tình trạng đông đúc và các vấn đề xã hội tại Hà Nội trong giai đoạn sau khi tiếp quản.
D. Những đặc trưng của Hà Nội khi thành phố tiếp nhận thêm nhiều dân nhập cư.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP