Hai nguồn kết hợp A, B cùng pha, cùng biên độ, cách nhau 40 cm. Khoảng cách giữa hai điểm dao động với biên độ cực đại gần nhau nhất trên đoạn AB là 0,8 cm. Điểm M thuộc miền giao thoa cách nguồn A một đoạn 25cm và cách nguồn B một đoạn 22cm. Dịch chuyển nguồn B từ từ dọc theo phương AB ra xa nguồn B đoạn 10 cm thì số lần điểm M chuyển thành điểm dao động với biên độ cực đại là:
Quảng cáo
Trả lời:
Đáp án đúng là D
Phương pháp giải
Xác định bước sóng của sóng.
Sử dụng điều kiện để phần tử dao động cực đại: \({d_1} - {d_2} = k\lambda \)
Lời giải
Khoảng cách giữa hai điểm dao động với biên độ cực đại gần nhau nhất trên đoạn AB là 0,8 cm
\( \Rightarrow \frac{\lambda }{2} = 0,8 \Rightarrow \lambda = 1,6\,({\rm{cm}})\)
Ta có hình ảnh minh họa:

Từ hình ta có: \(\cos \beta = \frac{{A{M^2} + {{\left( {A{B_1}} \right)}^2} - {{\left( {M{B_1}} \right)}^2}}}{{2AM.A{B_1}}} = \frac{{{{25}^2} + {{40}^2} - {{22}^2}}}{{2.25.40}} = 0,8705\)
Xét trong tam giác \(AM{B_2}\) ta có:
\(M{B_2} = \sqrt {A{M^2} + {{\left( {A{B_2}} \right)}^2} - 2AM.A{B_2}.\cos \beta } = \sqrt {{{25}^2} + {{50}^5} - 2.25.50.0,8705} = 30,8(\;{\rm{cm}})\)
Điểm \(M\) thuộc cực đại khi: \({d_{1M}} - {d_{2M}} = k\lambda = 1,6k\)
Mặt khác: \(\left\{ {\begin{array}{*{20}{l}}{\Delta {d_{M - 1}} = AM - M{B_1} = 25 - 22 = 3\;{\rm{cm}}}\\{\Delta {d_{M - 2}} = AM - M{B_2} = 25 - 30,8 = - 5,8\;{\rm{cm}}}\end{array}} \right.\)
\( \Rightarrow - 5,8 \le 1,6k \le 3\)
\( \Rightarrow - 3,6 \le k \le 1,8\)
\( \Rightarrow k = - 3; - 2; - 1;0;1\)
Vậy có 5 giá trị của k thỏa mãn hay điểm M sẽ chuyển thành điểm dao động cực đại 5 lần.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là "2640"
Phương pháp giải
Tính giá trị nhỏ nhất
Lời giải
Gọi \(x,y\) lần lượt là chiều rộng và chiều dài của đáy hình hộp.
Điều kiện: \(x > 0;y > 0\left( m \right)\).
Ta có thể tích của khối hộp: \(V = 1xy = 400 \Rightarrow xy = 400 \Rightarrow y = \frac{{400}}{x}\left( {{m^3}} \right)\).
Diện tích mặt đáy: \({S_d} = xy = x.\frac{{400}}{x} = 400\left( {{{\rm{m}}^2}} \right)\).
Giá tiền để làm mặt đáy là: \(400.4000000 = {16.10^8}\) (đồng).
Diện tích xung quanh của bể cá: \({S_{xq}} = 2.x.1 + 2.y.1 = 2.\left( {x + y} \right) = 2.\left( {x + \frac{{400}}{x}} \right)\).
Giá tiền để làm mặt bên là: \(2.\left( {x + \frac{{400}}{x}} \right).3000000 = {6.10^6}.\left( {x + \frac{{400}}{x}} \right)\).
Tổng chi phí để xây dựng bể cá là:
\(T\left( x \right) = {6.10^6}.\left( {x + \frac{{400}}{x}} \right) + {24.10^8} \ge {6.10^6}.2\sqrt {x.\frac{{400}}{x}} + {24.10^8} \approx 2640{\rm{\;}}\) (triệu đồng).
Câu 2
Lời giải
Đáp án đúng là A
Phương pháp giải
Nhận dạng đồ thị hàm số.
Lời giải
Điểm cao nhất của độ thị trên đoạn \(\left[ {0;3} \right]\) là \(y = 2,5\)
![Giá trị lớn nhất của hàm số f(x) trên đoạn [ {0;3] bằng (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/blobid9-1767597354.png)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
