Câu hỏi:

06/01/2026 7 Lưu

Hai hệ thống phòng ngự mà Pháp thiết lập ở Việt Nam năm 1950 là

A. hệ thống phòng ngự trên đường số 4 và hành lang Đông Tây.
B. hệ thống phòng ngự ở đồng bằng Bắc bộ và Trung du.
C. phòng tuyến boongke, vành đai trắng ở Trung du và đồng bằng Bắc Bộ.
D. hệ thống phòng ngự ở Nam Bộ và Nam Trung Bộ.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là A

Phương pháp giải

Xem lại chiến dịch Biên giới thu đông

Lời giải

Hai hệ thống phòng ngự mà Pháp thiết lập ở Việt Nam năm 1950 là hệ thống phòng ngự trên đường số 4 và hành lang Đông Tây.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(1) 2640

Đáp án đúng là "2640"

Phương pháp giải

Tính giá trị nhỏ nhất

Lời giải

Gọi \(x,y\) lần lượt là chiều rộng và chiều dài của đáy hình hộp.

Điều kiện: \(x > 0;y > 0\left( m \right)\).

Ta có thể tích của khối hộp: \(V = 1xy = 400 \Rightarrow xy = 400 \Rightarrow y = \frac{{400}}{x}\left( {{m^3}} \right)\).

Diện tích mặt đáy: \({S_d} = xy = x.\frac{{400}}{x} = 400\left( {{{\rm{m}}^2}} \right)\).

Giá tiền để làm mặt đáy là: \(400.4000000 = {16.10^8}\) (đồng).

Diện tích xung quanh của bể cá: \({S_{xq}} = 2.x.1 + 2.y.1 = 2.\left( {x + y} \right) = 2.\left( {x + \frac{{400}}{x}} \right)\).

Giá tiền để làm mặt bên là: \(2.\left( {x + \frac{{400}}{x}} \right).3000000 = {6.10^6}.\left( {x + \frac{{400}}{x}} \right)\).

Tổng chi phí để xây dựng bể cá là:

\(T\left( x \right) = {6.10^6}.\left( {x + \frac{{400}}{x}} \right) + {24.10^8} \ge {6.10^6}.2\sqrt {x.\frac{{400}}{x}}  + {24.10^8} \approx 2640{\rm{\;}}\) (triệu đồng).

Câu 2

A. \({u_n} = 2025 + \frac{{\left( {n + 2} \right)\left( {n + 1} \right)}}{2}\).    
B. \({u_n} = 2025 + \frac{{n\left( {n + 1} \right)}}{2}\).
C. \({u_n} = 2025 + \frac{{n\left( {n - 1} \right)}}{2}\)
D. \({u_n} = \frac{{n\left( {n - 1} \right)}}{2}\).

Lời giải

Đáp án đúng là C

Phương pháp giải

Tìm số hạng tổng quát của dãy số.

Lời giải

Ta có \(\left\{ {\begin{array}{*{20}{l}}{{u_1} = 2025}\\{{u_{n + 1}} = {u_n} + n\left( {\forall n \in {\mathbb{N}^{\rm{*}}}} \right)}\end{array}} \right.\)

Suy ra

\({u_2} = {u_1} + 1\);

\({u_3} = {u_2} + 2\);

\({u_4} = {u_3} + 3\);

...

\({u_n} = {u_{n - 1}} + n - 1\)

Cộng vế theo vế ta có

\({u_2} + {u_3} + {u_4} + \ldots + {u_n} = {u_1} + {u_2} + {u_3} + \ldots + {u_{n - 1}} + 1 + 2 + 3 + \ldots + \left( {n - 1} \right)\)

\( \Leftrightarrow {u_n} = {u_1} + 1 + 2 + 3 + \ldots + \left( {n - 1} \right) \Leftrightarrow {u_n} = 2025 + \frac{{n\left( {n - 1} \right)}}{2}\).

Câu 3

A. 2,5.     
B. 3.         
C. 1.                   
D. 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP