Câu hỏi:

06/01/2026 7 Lưu

Đặc điểm nào sau đây không đúng với dân cư Hoa Kỳ hiện nay?

  

A. Gia tăng tự nhiên thấp.     
B. Nhóm tuổi trên 65 tăng.

C. Tuổi thọ trung bình cao.   

D. Cơ cấu dân số còn trẻ.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là D

Phương pháp giải

Dựa vào lí thuyết về Vị trí địa lí, điều kiện tự nhiên và dân cư Hoa Kỳ.

Lời giải

Cơ cấu dân số còn trẻ là đặc điểm không đúng với dân cư Hoa Kỳ vì hiện nay Hoa Kỳ có cơ cấu dân số già, tỉ lệ người từ 65 tuổi trở lên có xu hướng tăng, người trong nhóm tuổi lao động chiếm tỉ lệ cao, tạo thuận lợi cho phát triển kinh tế nhưng cũng nảy sinh những khó khăn như giải quyết việc làm, tăng chi phí cho y tế và phúc lợi xã hội,....

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(1) 2640

Đáp án đúng là "2640"

Phương pháp giải

Tính giá trị nhỏ nhất

Lời giải

Gọi \(x,y\) lần lượt là chiều rộng và chiều dài của đáy hình hộp.

Điều kiện: \(x > 0;y > 0\left( m \right)\).

Ta có thể tích của khối hộp: \(V = 1xy = 400 \Rightarrow xy = 400 \Rightarrow y = \frac{{400}}{x}\left( {{m^3}} \right)\).

Diện tích mặt đáy: \({S_d} = xy = x.\frac{{400}}{x} = 400\left( {{{\rm{m}}^2}} \right)\).

Giá tiền để làm mặt đáy là: \(400.4000000 = {16.10^8}\) (đồng).

Diện tích xung quanh của bể cá: \({S_{xq}} = 2.x.1 + 2.y.1 = 2.\left( {x + y} \right) = 2.\left( {x + \frac{{400}}{x}} \right)\).

Giá tiền để làm mặt bên là: \(2.\left( {x + \frac{{400}}{x}} \right).3000000 = {6.10^6}.\left( {x + \frac{{400}}{x}} \right)\).

Tổng chi phí để xây dựng bể cá là:

\(T\left( x \right) = {6.10^6}.\left( {x + \frac{{400}}{x}} \right) + {24.10^8} \ge {6.10^6}.2\sqrt {x.\frac{{400}}{x}}  + {24.10^8} \approx 2640{\rm{\;}}\) (triệu đồng).

Câu 2

A. \({u_n} = 2025 + \frac{{\left( {n + 2} \right)\left( {n + 1} \right)}}{2}\).    
B. \({u_n} = 2025 + \frac{{n\left( {n + 1} \right)}}{2}\).
C. \({u_n} = 2025 + \frac{{n\left( {n - 1} \right)}}{2}\)
D. \({u_n} = \frac{{n\left( {n - 1} \right)}}{2}\).

Lời giải

Đáp án đúng là C

Phương pháp giải

Tìm số hạng tổng quát của dãy số.

Lời giải

Ta có \(\left\{ {\begin{array}{*{20}{l}}{{u_1} = 2025}\\{{u_{n + 1}} = {u_n} + n\left( {\forall n \in {\mathbb{N}^{\rm{*}}}} \right)}\end{array}} \right.\)

Suy ra

\({u_2} = {u_1} + 1\);

\({u_3} = {u_2} + 2\);

\({u_4} = {u_3} + 3\);

...

\({u_n} = {u_{n - 1}} + n - 1\)

Cộng vế theo vế ta có

\({u_2} + {u_3} + {u_4} + \ldots + {u_n} = {u_1} + {u_2} + {u_3} + \ldots + {u_{n - 1}} + 1 + 2 + 3 + \ldots + \left( {n - 1} \right)\)

\( \Leftrightarrow {u_n} = {u_1} + 1 + 2 + 3 + \ldots + \left( {n - 1} \right) \Leftrightarrow {u_n} = 2025 + \frac{{n\left( {n - 1} \right)}}{2}\).

Câu 3

A. 2,5.     
B. 3.         
C. 1.                   
D. 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP