Choose A, B, C or D to complete each sentence
The teenagers ___________ we interviewed were all satisfied with their school life.
Quảng cáo
Trả lời:
Đáp án đúng là C
Phương pháp giải
Đại từ quan hệ.
Đại từ quan hệ
Trạng từ quan hệ
Lời giải
A. whose thay thế sự sở hữu
B. which thay thế cho vật
C. that: có thể thay thế cho who chỉ người
D. what : không phù hợp vì what dùng để chỉ sự vật hoặc điều kiện.
=> The teenagers that we interviewed were all satisfied with their school life.
Tạm dịch: Những thanh thiếu niên mà chúng tôi phỏng vấn đều hài lòng với cuộc sống học đường của họ.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là "2640"
Phương pháp giải
Tính giá trị nhỏ nhất
Lời giải
Gọi \(x,y\) lần lượt là chiều rộng và chiều dài của đáy hình hộp.
Điều kiện: \(x > 0;y > 0\left( m \right)\).
Ta có thể tích của khối hộp: \(V = 1xy = 400 \Rightarrow xy = 400 \Rightarrow y = \frac{{400}}{x}\left( {{m^3}} \right)\).
Diện tích mặt đáy: \({S_d} = xy = x.\frac{{400}}{x} = 400\left( {{{\rm{m}}^2}} \right)\).
Giá tiền để làm mặt đáy là: \(400.4000000 = {16.10^8}\) (đồng).
Diện tích xung quanh của bể cá: \({S_{xq}} = 2.x.1 + 2.y.1 = 2.\left( {x + y} \right) = 2.\left( {x + \frac{{400}}{x}} \right)\).
Giá tiền để làm mặt bên là: \(2.\left( {x + \frac{{400}}{x}} \right).3000000 = {6.10^6}.\left( {x + \frac{{400}}{x}} \right)\).
Tổng chi phí để xây dựng bể cá là:
\(T\left( x \right) = {6.10^6}.\left( {x + \frac{{400}}{x}} \right) + {24.10^8} \ge {6.10^6}.2\sqrt {x.\frac{{400}}{x}} + {24.10^8} \approx 2640{\rm{\;}}\) (triệu đồng).
Câu 2
Lời giải
Đáp án đúng là C
Phương pháp giải
Tìm số hạng tổng quát của dãy số.
Lời giải
Ta có \(\left\{ {\begin{array}{*{20}{l}}{{u_1} = 2025}\\{{u_{n + 1}} = {u_n} + n\left( {\forall n \in {\mathbb{N}^{\rm{*}}}} \right)}\end{array}} \right.\)
Suy ra
\({u_2} = {u_1} + 1\);
\({u_3} = {u_2} + 2\);
\({u_4} = {u_3} + 3\);
...
\({u_n} = {u_{n - 1}} + n - 1\)
Cộng vế theo vế ta có
\({u_2} + {u_3} + {u_4} + \ldots + {u_n} = {u_1} + {u_2} + {u_3} + \ldots + {u_{n - 1}} + 1 + 2 + 3 + \ldots + \left( {n - 1} \right)\)
\( \Leftrightarrow {u_n} = {u_1} + 1 + 2 + 3 + \ldots + \left( {n - 1} \right) \Leftrightarrow {u_n} = 2025 + \frac{{n\left( {n - 1} \right)}}{2}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

