Câu hỏi:

06/01/2026 4 Lưu

Choose A, B, C or D to complete each dialogue.

Emma: How about we go camping this weekend?

Liam: _____________

A. I think you should raise others.
B. That sounds like a great idea, I’m in!
C. I’ll suggest something later.
D. Maybe next time.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là B

Phương pháp giải

Hội thoại giao tiếp

Lời giải

Emma: Chúng ta đi cắm trại cuối tuần này nhé?

Liam: ______

A. Tôi nghĩ bạn nên khuyên người khác.

B. Nghe có vẻ là một ý tưởng tuyệt vời, tôi tham gia!

C. Tôi sẽ đề xuất một cái gì đó sau.

D. Có lẽ lần sau.

Câu trả lời B là hợp lý nhất vì Liam đồng ý ngay với kế hoạch cắm trại, thể hiện sự hào hứng và tham gia vào hoạt động chung.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(1) 2640

Đáp án đúng là "2640"

Phương pháp giải

Tính giá trị nhỏ nhất

Lời giải

Gọi \(x,y\) lần lượt là chiều rộng và chiều dài của đáy hình hộp.

Điều kiện: \(x > 0;y > 0\left( m \right)\).

Ta có thể tích của khối hộp: \(V = 1xy = 400 \Rightarrow xy = 400 \Rightarrow y = \frac{{400}}{x}\left( {{m^3}} \right)\).

Diện tích mặt đáy: \({S_d} = xy = x.\frac{{400}}{x} = 400\left( {{{\rm{m}}^2}} \right)\).

Giá tiền để làm mặt đáy là: \(400.4000000 = {16.10^8}\) (đồng).

Diện tích xung quanh của bể cá: \({S_{xq}} = 2.x.1 + 2.y.1 = 2.\left( {x + y} \right) = 2.\left( {x + \frac{{400}}{x}} \right)\).

Giá tiền để làm mặt bên là: \(2.\left( {x + \frac{{400}}{x}} \right).3000000 = {6.10^6}.\left( {x + \frac{{400}}{x}} \right)\).

Tổng chi phí để xây dựng bể cá là:

\(T\left( x \right) = {6.10^6}.\left( {x + \frac{{400}}{x}} \right) + {24.10^8} \ge {6.10^6}.2\sqrt {x.\frac{{400}}{x}}  + {24.10^8} \approx 2640{\rm{\;}}\) (triệu đồng).

Câu 2

A. \({u_n} = 2025 + \frac{{\left( {n + 2} \right)\left( {n + 1} \right)}}{2}\).    
B. \({u_n} = 2025 + \frac{{n\left( {n + 1} \right)}}{2}\).
C. \({u_n} = 2025 + \frac{{n\left( {n - 1} \right)}}{2}\)
D. \({u_n} = \frac{{n\left( {n - 1} \right)}}{2}\).

Lời giải

Đáp án đúng là C

Phương pháp giải

Tìm số hạng tổng quát của dãy số.

Lời giải

Ta có \(\left\{ {\begin{array}{*{20}{l}}{{u_1} = 2025}\\{{u_{n + 1}} = {u_n} + n\left( {\forall n \in {\mathbb{N}^{\rm{*}}}} \right)}\end{array}} \right.\)

Suy ra

\({u_2} = {u_1} + 1\);

\({u_3} = {u_2} + 2\);

\({u_4} = {u_3} + 3\);

...

\({u_n} = {u_{n - 1}} + n - 1\)

Cộng vế theo vế ta có

\({u_2} + {u_3} + {u_4} + \ldots + {u_n} = {u_1} + {u_2} + {u_3} + \ldots + {u_{n - 1}} + 1 + 2 + 3 + \ldots + \left( {n - 1} \right)\)

\( \Leftrightarrow {u_n} = {u_1} + 1 + 2 + 3 + \ldots + \left( {n - 1} \right) \Leftrightarrow {u_n} = 2025 + \frac{{n\left( {n - 1} \right)}}{2}\).

Câu 3

A. 2,5.     
B. 3.         
C. 1.                   
D. 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP