Gọi \(n\) là số nguyên dương thỏa mãn \(A_n^3 + 2A_n^2 = 48\). Hệ số của \({x^3}\) trong khai triển nhị thức Niu-tơn của \({\left( {1 - 3x} \right)^n}\) thuộc khoảng nào dưới đây?
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Điều kiện: \(n \in \mathbb{N},n \ge 3\)
\(A_n^3 + 2A_n^2 = 48 \Leftrightarrow \frac{{n!}}{{\left( {n - 3} \right)!}} + 2\frac{{n!}}{{\left( {n - 2} \right)!}} = 48\)
\( \Leftrightarrow \)\(n\left( {n - 1} \right)\left( {n - 2} \right) + 2.n\left( {n - 1} \right) = 48\)
\( \Leftrightarrow \)\({n^3} - {n^2} - 48 = 0 \Leftrightarrow n = 4\)
Ta có \({\left( {1 - 3x} \right)^4} = C_4^0{1^4}{\left( { - 3x} \right)^0} + C_4^1{1^3}{\left( { - 3x} \right)^1} + C_4^2{1^2}{\left( { - 3x} \right)^2} + C_4^3{1^1}{\left( { - 3x} \right)^3} + C_4^4{1^0}{\left( { - 3x} \right)^4}\)
\( = 1 - 12x + 54{x^2} - 108{x^3} + 81{x^4}\)
Vậy hệ số của \({x^3}\) trong khai triển \({\left( {1 - 3x} \right)^4}\) là \[ - 108\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Sắp xếp mẫu số liệu theo thứ tự không giảm ta được: 5; 6; 6; 7; 7; 8; 8; 9; 9.
Vì mẫu số liệu gồm 9 số liệu nên trung vị là số ở vị trí thứ 5 và là số 7.
Vậy trung vị của mẫu số liệu đã cho là 7.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có: \[\overrightarrow {NM} = \left( { - 1 - 3;\,2 - \left( { - 1} \right)} \right) = \left( { - 4;\,\,3} \right)\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.