Câu hỏi:

06/01/2026 10 Lưu

Phương trình tổng quát của đường thẳng đi qua hai điểm \(A\left( { - 2;4} \right)\) và \(B\left( {1;0} \right)\) là

A. \(4x + 3y + 4 = 0\);  
B. \(4x + 3y - 4 = 0\); 
C. \(4x - 3y + 4 = 0\);  
D. \(4x - 3y - 4 = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Ta có: \(\overrightarrow {AB} \left( {3; - 4} \right)\)

Khi đó đường thẳng \(AB\) nhận \(\left( {4;3} \right)\) làm vectơ pháp tuyến có phương trình là:

\(4\left( {x - 1} \right) + 3\left( {y - 0} \right) = 0 \Leftrightarrow 4x + 3y - 4 = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(10.10\); 
B. \(10!\); 
C. \(C_{10}^1\);  
D. \(A_{10}^1\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Mỗi cách sắp xếp \(10\) học sinh thành một hàng dọc là một hoán vị của \(10\) phần tử. Vậy có \(10!\) cách xếp.

Lời giải

Hướng dẫn giải

a) Gọi số cần tìm có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \) là số thỏa yêu cầu bài toán thì \({a_3} + {a_4} + {a_5} = 8\).

Có hai bộ \(3\) số có tổng bằng \(8\) trong các số \(1;2;3;...;9\) là: \(\left\{ {1;2;5} \right\}\)và \(\left\{ {1;3;4} \right\}\)

Nếu \({a_3};{a_4};{a_5} \in \left\{ {1;2;5} \right\}\) thì \({a_3},{a_4},{a_5}\) có \(3!\) cách chọn và \({a_1},{a_2},{a_6}\) có \(A_6^3\) cách chọn suy ra có \(3!A_6^3 = 720\) số thỏa mãn yêu cầu.

Nếu \({a_3};{a_4};{a_5} \in \left\{ {1;2;5} \right\}\) tương tự ta cũng có \(720\) số thỏa yêu cầu.

Vậy có \(720 + 720 = 1400\) số thỏa yêu cầu.

b) Điều kiện: \[n \ge 2,n \in {\mathbb{N}^*}\]

\[C_n^1 + C_n^2 = 15 \Leftrightarrow n + \frac{{n\left( {n - 1} \right)}}{2} = 15 \Leftrightarrow {n^2} + n - 30 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{n = 5}\\{n =  - 6}\end{array}} \right. \Rightarrow n = 5\]

Khi đó,

\[{\left( {x + \frac{2}{{{x^4}}}} \right)^5} = C_5^0{x^5}{\left( {\frac{2}{{{x^4}}}} \right)^0} + C_5^1{x^4}\left( {\frac{2}{{{x^4}}}} \right) + C_5^2{x^3}{\left( {\frac{2}{{{x^4}}}} \right)^2} + C_5^3{x^2}{\left( {\frac{2}{{{x^4}}}} \right)^3} + C_5^4x{\left( {\frac{2}{{{x^4}}}} \right)^4} + C_5^5{x^0}{\left( {\frac{2}{{{x^4}}}} \right)^5}\]\( = {x^5} + 10 + \frac{{40}}{{{x^5}}} + \frac{{80}}{{{x^{10}}}} + \frac{{80}}{{{x^{15}}}} + \frac{{32}}{{{x^{20}}}}\)

Suy hệ số của số hạng không chứa \[x\] trong khai triển \({\left( {x + \frac{2}{{{x^4}}}} \right)^5}\) là \(10\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

I. PHẦN TRẮC NGHIỆM

Cho số gần đúng \(a = 1,2568\) với độ chính xác \(d = 0,001\). Số quy tròn của số \(a\) là

A. 1,257; 
B. 1,26;  
C. 1,256;
D. 1,3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( { - 2; - 2} \right)\);                         
B. \(\left( { - \frac{{10}}{3}; - \frac{{14}}{3}} \right)\);                                
C. \(\left( {\frac{2}{5};\frac{{14}}{5}} \right)\);  
D. \(\left( { - \frac{2}{3}; - \frac{{10}}{3}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP