Câu hỏi:

06/01/2026 38 Lưu

Trong các phương trình sau phương trình nào biểu diễn một Hypebol?

A. \(\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{16}} = 1\); 
B. \(\frac{{{x^2}}}{{ - 9}} - \frac{{{y^2}}}{{16}} = 1\);
C. \(\frac{{{x^2}}}{{25}} + \frac{{{{\left( { - y} \right)}^2}}}{9} = 1\); 
D.\(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{4} = 1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Phương trình chính tắc của Hypebol có dạng: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1 & ;\,\left( {a,b > 0} \right)\).

Vậy đáp án đúng là A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Gọi số cần tìm có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \) là số thỏa yêu cầu bài toán thì \({a_3} + {a_4} + {a_5} = 8\).

Có hai bộ \(3\) số có tổng bằng \(8\) trong các số \(1;2;3;...;9\) là: \(\left\{ {1;2;5} \right\}\)và \(\left\{ {1;3;4} \right\}\)

Nếu \({a_3};{a_4};{a_5} \in \left\{ {1;2;5} \right\}\) thì \({a_3},{a_4},{a_5}\) có \(3!\) cách chọn và \({a_1},{a_2},{a_6}\) có \(A_6^3\) cách chọn suy ra có \(3!A_6^3 = 720\) số thỏa mãn yêu cầu.

Nếu \({a_3};{a_4};{a_5} \in \left\{ {1;2;5} \right\}\) tương tự ta cũng có \(720\) số thỏa yêu cầu.

Vậy có \(720 + 720 = 1400\) số thỏa yêu cầu.

b) Điều kiện: \[n \ge 2,n \in {\mathbb{N}^*}\]

\[C_n^1 + C_n^2 = 15 \Leftrightarrow n + \frac{{n\left( {n - 1} \right)}}{2} = 15 \Leftrightarrow {n^2} + n - 30 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{n = 5}\\{n =  - 6}\end{array}} \right. \Rightarrow n = 5\]

Khi đó,

\[{\left( {x + \frac{2}{{{x^4}}}} \right)^5} = C_5^0{x^5}{\left( {\frac{2}{{{x^4}}}} \right)^0} + C_5^1{x^4}\left( {\frac{2}{{{x^4}}}} \right) + C_5^2{x^3}{\left( {\frac{2}{{{x^4}}}} \right)^2} + C_5^3{x^2}{\left( {\frac{2}{{{x^4}}}} \right)^3} + C_5^4x{\left( {\frac{2}{{{x^4}}}} \right)^4} + C_5^5{x^0}{\left( {\frac{2}{{{x^4}}}} \right)^5}\]\( = {x^5} + 10 + \frac{{40}}{{{x^5}}} + \frac{{80}}{{{x^{10}}}} + \frac{{80}}{{{x^{15}}}} + \frac{{32}}{{{x^{20}}}}\)

Suy hệ số của số hạng không chứa \[x\] trong khai triển \({\left( {x + \frac{2}{{{x^4}}}} \right)^5}\) là \(10\).

Câu 2

A. \(10.10\); 
B. \(10!\); 
C. \(C_{10}^1\);  
D. \(A_{10}^1\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Mỗi cách sắp xếp \(10\) học sinh thành một hàng dọc là một hoán vị của \(10\) phần tử. Vậy có \(10!\) cách xếp.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

I. PHẦN TRẮC NGHIỆM

Cho số gần đúng \(a = 1,2568\) với độ chính xác \(d = 0,001\). Số quy tròn của số \(a\) là

A. 1,257; 
B. 1,26;  
C. 1,256;
D. 1,3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP