Câu hỏi:

07/01/2026 38 Lưu

Với giá trị nào của \[m\] thì hai đường thẳng. \[{d_1}:\left( {m - 3} \right)x + 2y + {m^2} - 1 = 0\] và \[{d_2}: - x + my + {m^2} - 2m + 1 = 0\] cắt nhau?

A. \[m \ne 1\];  
B. \[\left\{ \begin{array}{l}m \ne 1\\m \ne 2\end{array} \right.\]; 
C. \[m \ne 2\];  
D. \[\left[ \begin{array}{l}m \ne 1\\m \ne 2\end{array} \right.\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

\[\left\{ \begin{array}{l}{d_1}:\left( {m - 3} \right)x + 2y + {m^2} - 1 = 0\\{d_2}: - x + my + {m^2} - 2m + 1 = 0\end{array} \right.\].

Trường hợp 1: \(m = 0\) ta có \({d_1}: - 3x + 2y - 1 = 0;\,{d_2}: - x + 1 = 0\) có hai vectơ pháp tuyến là \(\overrightarrow {{n_1}} \left( { - 3;2} \right);\overrightarrow {{n_2}} \left( { - 1;0} \right)\) không cùng phương nên \({d_1}\) và \({d_2}\) cắt nhau.

Vậy với \(m = 0\) thoả mãn

Trường hợp 2: \(m \ne 0\) thì \({d_1}\) và \({d_2}\) có vectơ pháp tuyến là \(\overrightarrow {{n_1}} \left( {m - 3;2} \right);\overrightarrow {{n_2}} \left( { - 1;m} \right)\) để \({d_1}\) và \({d_2}\) cắt nhau thì \(\frac{{m - 3}}{{ - 1}} \ne \frac{2}{m} \Leftrightarrow {m^2} - 3m + 2 \ne 0 \Leftrightarrow \left[ \begin{array}{l}m \ne 1\\m \ne 2\end{array} \right.\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có: \(M(4;2) \in d \Leftrightarrow 4 + 2b + c = 0 \Rightarrow c =  - 4 - 2b.\)

\(d(A,d) = \frac{{\left| {1 + c} \right|}}{{\sqrt {1 + {b^2}} }} = \frac{{3\sqrt {10} }}{{10}} \Leftrightarrow 10{(1 + c)^2} = 9(1 + {b^2})\)(1)

Thay \(c =  - 4 - 2b\) vào phương trình (1) ta có: \[31{b^2} + 120b + 81 = 0 \Leftrightarrow \left[ \begin{array}{l}b =  - 3\\b =  - \frac{{27}}{{31}}\end{array} \right.\]

Vì \(b\) là số nguyên nên \(b =  - 3,c = 2 \Rightarrow b + c =  - 1\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Ta xét khai triển \({\left( {\frac{3}{x} + 2x} \right)^4}\) ( với \(x \ne 0\)) có số hạng tổng quát là

\({\left( {\frac{3}{x} + 2x} \right)^4} = C_4^0.{\left( {\frac{3}{x}} \right)^4} + C_4^1.{\left( {\frac{3}{x}} \right)^3}.\left( {2x} \right) + C_4^2.{\left( {\frac{3}{x}} \right)^2}.{\left( {2x} \right)^2} + C_4^3.\left( {\frac{3}{x}} \right).{\left( {2x} \right)^3} + C_4^4.{\left( {2x} \right)^4}\)

\( = \frac{{81}}{{{x^4}}} + \frac{{216}}{{{x^2}}} + 216 + 96{x^2} + 16{x^4}\).

Vậy số hạng không chứa \[x\] trong khai triển là \[216\].

Câu 4

A. \(3x + 4y + 5\sqrt 2  - 11 = 0\), \(3x + 4y - 5\sqrt 2  + 11 = 0\);
B. \(3x + 4y + 5\sqrt 2  - 11 = 0\), \(3x + 4y - 5\sqrt 2  - 11 = 0\);
C. \(3x + 4y + 5\sqrt 2  - 11 = 0\), \(3x + 4y + 5\sqrt 2  + 11 = 0\);
D. \(3x + 4y - 5\sqrt 2  + 11 = 0\), \(3x + 4y - 5\sqrt 2  - 11 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[{x^5} + 1620{x^4} + 4320{x^3} + 5760{x^2} + 3840x + 1024\];
B. \[243{x^5} + 405{x^4} + 4320{x^3} + 5760{x^2} + 3840x + 1024\];
C. \[243{x^5} - 1620{x^4} + 4320{x^3} - 5760{x^2} + 3840x - 1024\];
D. \[243{x^5} + 1620{x^4} + 4320{x^3} + 5760{x^2} + 3840x + 1024\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP