Trong mặt phẳng với hệ tọa độ \[Oxy\], cho đường tròn \(\left( C \right):{x^2} + {y^2} - 2x - 4y + 3 = 0\). Phương trình tiếp tuyến \(d\) của đường tròn \((C)\) (biết tiếp tuyến đó song song với đường thẳng \(\Delta :3x + 4y + 1 = 0\)) là
Trong mặt phẳng với hệ tọa độ \[Oxy\], cho đường tròn \(\left( C \right):{x^2} + {y^2} - 2x - 4y + 3 = 0\). Phương trình tiếp tuyến \(d\) của đường tròn \((C)\) (biết tiếp tuyến đó song song với đường thẳng \(\Delta :3x + 4y + 1 = 0\)) là
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
\(\left( C \right):{x^2} + {y^2} - 2x - 4y + 3 = 0 \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 2\).
Do đó đường tròn có tâm \(I = \left( {1;\,2} \right)\) và bán kính \(R = \sqrt 2 \).
Do \(d\) song song với đường thẳng \(\Delta \) nên \(d\) có phương trình là \(3x + 4y + k = 0\), \(\left( {k \ne 1} \right)\).
Ta có:
\(d\left( {I;\,d} \right) = R \Leftrightarrow \frac{{\left| {11 + k} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \sqrt 2 \Leftrightarrow \left| {11 + k} \right| = 5\sqrt 2 \Leftrightarrow \left[ \begin{array}{l}11 + k = 5\sqrt 2 \\11 + k = - 5\sqrt 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}k = 5\sqrt 2 - 11\\k = - 5\sqrt 2 - 11\end{array} \right.\).
Vậy có hai phương trình tiếp tuyến cần tìm là \(3x + 4y + 5\sqrt 2 - 11 = 0\), \(3x + 4y - 5\sqrt 2 - 11 = 0\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có: \(M(4;2) \in d \Leftrightarrow 4 + 2b + c = 0 \Rightarrow c = - 4 - 2b.\)
\(d(A,d) = \frac{{\left| {1 + c} \right|}}{{\sqrt {1 + {b^2}} }} = \frac{{3\sqrt {10} }}{{10}} \Leftrightarrow 10{(1 + c)^2} = 9(1 + {b^2})\)(1)
Thay \(c = - 4 - 2b\) vào phương trình (1) ta có: \[31{b^2} + 120b + 81 = 0 \Leftrightarrow \left[ \begin{array}{l}b = - 3\\b = - \frac{{27}}{{31}}\end{array} \right.\]
Vì \(b\) là số nguyên nên \(b = - 3,c = 2 \Rightarrow b + c = - 1\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Ta xét khai triển \({\left( {\frac{3}{x} + 2x} \right)^4}\) ( với \(x \ne 0\)) có số hạng tổng quát là
\({\left( {\frac{3}{x} + 2x} \right)^4} = C_4^0.{\left( {\frac{3}{x}} \right)^4} + C_4^1.{\left( {\frac{3}{x}} \right)^3}.\left( {2x} \right) + C_4^2.{\left( {\frac{3}{x}} \right)^2}.{\left( {2x} \right)^2} + C_4^3.\left( {\frac{3}{x}} \right).{\left( {2x} \right)^3} + C_4^4.{\left( {2x} \right)^4}\)
\( = \frac{{81}}{{{x^4}}} + \frac{{216}}{{{x^2}}} + 216 + 96{x^2} + 16{x^4}\).
Vậy số hạng không chứa \[x\] trong khai triển là \[216\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.