Khai triển của nhị thức \[{\left( {3x + 4} \right)^5}\] là
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
\[{\left( {3x + 4} \right)^5} = C_5^0{\left( {3x} \right)^5} + C_5^1{\left( {3x} \right)^4}.4 + C_5^2{\left( {3x} \right)^3}{.4^2} + C_5^3{\left( {3x} \right)^2}{.4^3} + C_5^4{\left( {3x} \right)^1}{.4^4} + C_5^5{.4^5}\]\[ = 243{x^5} + 1620{x^4} + 4320{x^3} + 5760{x^2} + 3840x + 1024\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Ta có: \(\overrightarrow {AB} = \left( {4; - 2} \right) = 2\left( {2; - 1} \right)\) là vectơ chỉ phương của đường thẳng \(AB\).
Khi đó phương trình đường thẳng \(AB\) nhận \(\left( {1;2} \right)\) làm vectơ pháp tuyến có phương trình là: \(1\left( {x + 1} \right) + 2\left( {y - 3} \right) = 0 \Leftrightarrow x + 2y - 5 = 0\).
b) Ta có: \(A \in {d_1}\) nên \(A\left( {3;a} \right)\), \(\left( {a < 3} \right)\).
Vì tam giác \(ABC\) vuông tại \(B\) mà \(ABC\) nội tiếp đường tròn nên \(AC\) là đường kính.
Đường thẳng \({d_1}:x = 3\) có một vectơ pháp tuyến là \(\left( {1;0} \right)\) nên có một vectơ chỉ phương là \(\left( {0;1} \right)\).
Đường thẳng \({d_2}:x - y + 3 = 0\) có một vectơ pháp tuyến là \(\left( {1; - 1} \right)\) nên có một vectơ chỉ phương là \(\left( {1;1} \right)\).
Phương trình đường thẳng \(AC\) nhận \(\left( {0;1} \right)\) làm vectơ pháp tuyến có phương trình là: \(y = a\).
Phương trình đường thẳng \(AB\) nhận \(\left( {1;1} \right)\) làm vectơ pháp tuyến có phương trình là: \(\left( {x - 3} \right) + \left( {y - a} \right) = 0 \Leftrightarrow x + y = a + 3\).
Điểm \(C\) là giao của đường thẳng \(AC\) và \({d_2}\) nên ta có:
\(\left\{ \begin{array}{l}y = a\\x - y + 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = a - 3\\y = a\end{array} \right. \Rightarrow C\left( {a - 3;a} \right)\).
Điểm \(B\) là giao của đường thẳng \(AB\) và \({d_2}\) nên ta có:
\(\left\{ \begin{array}{l}x + y - a - 3 = 0\\x - y + 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{a}{2}\\y = \frac{a}{2} + 3\end{array} \right. \Rightarrow B\left( {\frac{a}{2};\frac{a}{2} + 3} \right)\).
Khi đó \(\overrightarrow {AB} \left( {\frac{a}{2} - 3; - \frac{a}{2} + 3} \right) \Rightarrow AB = \left| {\frac{a}{2} - 3} \right|\).
\(\overrightarrow {BC} \left( {\frac{a}{2} - 3;\frac{a}{2} - 3} \right) \Rightarrow BC = \left| {\frac{a}{2} - 3} \right|\).
Diện tích tam giác \(ABC\) bằng \(\frac{1}{2}AB.BC = \frac{1}{2}{\left( {\frac{a}{2} - 3} \right)^2} = 4 \Leftrightarrow \left[ \begin{array}{l}\frac{a}{2} - 3 = 2\sqrt 2 \\\frac{a}{2} - 3 = - 2\sqrt 2 \end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}a = 2\left( {3 + 2\sqrt 2 } \right)\\a = 2\left( {3 - 2\sqrt 2 } \right)\end{array} \right.\)
\( \Rightarrow a = 2\left( {3 - 2\sqrt 2 } \right)\) thỏa mãn điều kiện.
Vậy tọa độ điểm \(A\left( {3;2\left( {3 - 2\sqrt 2 } \right)} \right)\).
Lời giải
Hướng dẫn giải
a) Gọi số vận động viên nam là \(n\) (vận động viên) \(\left( {n \in {\mathbb{N}^*}} \right)\).
Số ván các vận động viên nam chơi với nhau là \(2.C_n^2 = n(n - 1)\).
Số ván các vận động viên nam chơi với các vận động viên nữ là \(C_2^1.C_n^2.2 = 4n\).
Khi đó ta có \(n\left( {n - 1} \right) - 4n = 84 \Rightarrow n = 12\) (loại \(n = - 7\)).
Vậy tổng số ván các vận động viên chơi là \(2.C_{14}^2 = 182\).
b) Ta có khai triển của \({\left( {1 - {x^2}} \right)^5}\) là:
\({\left( {1 - {x^2}} \right)^5} = C_5^0{1^5} - C_5^1{.1^4}.{x^2} + C_5^2{.1^3}.{\left( {{x^2}} \right)^2} - C_5^3{.1^2}.{\left( {{x^2}} \right)^3} + C_5^4.1.{\left( {{x^2}} \right)^4} - C_5^5.{\left( {{x^2}} \right)^5}\)
\( = 1 - 5{x^2} + 10{x^4} - 10{x^6} + 5{x^8} - {x^{10}}\).
Vậy hệ số của \({x^6}\) trong khai triển là \( - 10\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.