Câu hỏi:

07/01/2026 89 Lưu

a) Trong mặt phẳng \(Oxy\), viết phương trình tổng quát của đường thẳng đi qua hai điểm \(A\left( { - 1;3} \right)\) và \(B\left( {3;1} \right)\).

b) Trong mặt phẳng \(Oxy\), cho hai đường thẳng \({d_1}:x = 3\) và \({d_2}:x - y + 3 = 0\). Một đường tròn tiếp xúc với \({d_1}\) tại \(A\) và cắt \({d_2}\) tại hai điểm \(B\) và \(C\) sao cho tam giác \(ABC\) vuông tại \(B\). Tìm tọa độ điểm \[A\], biết tam giác \(ABC\) có diện tích bằng \(4\) và điểm \(A\) có tung độ nhỏ hơn \(3\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Ta có: \(\overrightarrow {AB}  = \left( {4; - 2} \right) = 2\left( {2; - 1} \right)\) là vectơ chỉ phương của đường thẳng \(AB\).

Khi đó phương trình đường thẳng \(AB\) nhận  \(\left( {1;2} \right)\) làm vectơ pháp tuyến có phương trình là: \(1\left( {x + 1} \right) + 2\left( {y - 3} \right) = 0 \Leftrightarrow x + 2y - 5 = 0\).

b) Ta có: \(A \in {d_1}\) nên \(A\left( {3;a} \right)\), \(\left( {a < 3} \right)\).

Vì tam giác \(ABC\) vuông tại \(B\) mà \(ABC\) nội tiếp đường tròn nên \(AC\) là đường kính.

Đường thẳng \({d_1}:x = 3\) có một vectơ pháp tuyến là \(\left( {1;0} \right)\) nên có một vectơ chỉ phương là \(\left( {0;1} \right)\).

Đường thẳng \({d_2}:x - y + 3 = 0\) có một vectơ pháp tuyến là \(\left( {1; - 1} \right)\) nên có một vectơ chỉ phương là \(\left( {1;1} \right)\).

Phương trình đường thẳng \(AC\) nhận \(\left( {0;1} \right)\) làm vectơ pháp tuyến có phương trình là: \(y = a\).

Phương trình đường thẳng \(AB\) nhận \(\left( {1;1} \right)\) làm vectơ pháp tuyến có phương trình là: \(\left( {x - 3} \right) + \left( {y - a} \right) = 0 \Leftrightarrow x + y = a + 3\).

Điểm \(C\) là giao của đường thẳng \(AC\) và \({d_2}\) nên ta có:

\(\left\{ \begin{array}{l}y = a\\x - y + 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = a - 3\\y = a\end{array} \right. \Rightarrow C\left( {a - 3;a} \right)\).

Điểm \(B\) là giao của đường thẳng \(AB\) và \({d_2}\) nên ta có:

\(\left\{ \begin{array}{l}x + y - a - 3 = 0\\x - y + 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{a}{2}\\y = \frac{a}{2} + 3\end{array} \right. \Rightarrow B\left( {\frac{a}{2};\frac{a}{2} + 3} \right)\).

Khi đó \(\overrightarrow {AB} \left( {\frac{a}{2} - 3; - \frac{a}{2} + 3} \right) \Rightarrow AB = \left| {\frac{a}{2} - 3} \right|\).

\(\overrightarrow {BC} \left( {\frac{a}{2} - 3;\frac{a}{2} - 3} \right) \Rightarrow BC = \left| {\frac{a}{2} - 3} \right|\).

Diện  tích tam giác \(ABC\) bằng \(\frac{1}{2}AB.BC = \frac{1}{2}{\left( {\frac{a}{2} - 3} \right)^2} = 4 \Leftrightarrow \left[ \begin{array}{l}\frac{a}{2} - 3 = 2\sqrt 2 \\\frac{a}{2} - 3 =  - 2\sqrt 2 \end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}a = 2\left( {3 + 2\sqrt 2 } \right)\\a = 2\left( {3 - 2\sqrt 2 } \right)\end{array} \right.\)

\( \Rightarrow a = 2\left( {3 - 2\sqrt 2 } \right)\) thỏa mãn điều kiện.

Vậy tọa độ điểm \(A\left( {3;2\left( {3 - 2\sqrt 2 } \right)} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có: \(M(4;2) \in d \Leftrightarrow 4 + 2b + c = 0 \Rightarrow c =  - 4 - 2b.\)

\(d(A,d) = \frac{{\left| {1 + c} \right|}}{{\sqrt {1 + {b^2}} }} = \frac{{3\sqrt {10} }}{{10}} \Leftrightarrow 10{(1 + c)^2} = 9(1 + {b^2})\)(1)

Thay \(c =  - 4 - 2b\) vào phương trình (1) ta có: \[31{b^2} + 120b + 81 = 0 \Leftrightarrow \left[ \begin{array}{l}b =  - 3\\b =  - \frac{{27}}{{31}}\end{array} \right.\]

Vì \(b\) là số nguyên nên \(b =  - 3,c = 2 \Rightarrow b + c =  - 1\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Ta xét khai triển \({\left( {\frac{3}{x} + 2x} \right)^4}\) ( với \(x \ne 0\)) có số hạng tổng quát là

\({\left( {\frac{3}{x} + 2x} \right)^4} = C_4^0.{\left( {\frac{3}{x}} \right)^4} + C_4^1.{\left( {\frac{3}{x}} \right)^3}.\left( {2x} \right) + C_4^2.{\left( {\frac{3}{x}} \right)^2}.{\left( {2x} \right)^2} + C_4^3.\left( {\frac{3}{x}} \right).{\left( {2x} \right)^3} + C_4^4.{\left( {2x} \right)^4}\)

\( = \frac{{81}}{{{x^4}}} + \frac{{216}}{{{x^2}}} + 216 + 96{x^2} + 16{x^4}\).

Vậy số hạng không chứa \[x\] trong khai triển là \[216\].

Câu 3

A. \(3x + 4y + 5\sqrt 2  - 11 = 0\), \(3x + 4y - 5\sqrt 2  + 11 = 0\);
B. \(3x + 4y + 5\sqrt 2  - 11 = 0\), \(3x + 4y - 5\sqrt 2  - 11 = 0\);
C. \(3x + 4y + 5\sqrt 2  - 11 = 0\), \(3x + 4y + 5\sqrt 2  + 11 = 0\);
D. \(3x + 4y - 5\sqrt 2  + 11 = 0\), \(3x + 4y - 5\sqrt 2  - 11 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[{x^5} + 1620{x^4} + 4320{x^3} + 5760{x^2} + 3840x + 1024\];
B. \[243{x^5} + 405{x^4} + 4320{x^3} + 5760{x^2} + 3840x + 1024\];
C. \[243{x^5} - 1620{x^4} + 4320{x^3} - 5760{x^2} + 3840x - 1024\];
D. \[243{x^5} + 1620{x^4} + 4320{x^3} + 5760{x^2} + 3840x + 1024\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP