Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(B,AB = BC = 2a\), hai mặt phẳng \(\left( {SAB} \right)\) và (\(SAC\)) cùng vuông góc với mặt phẳng \(\left( {ABC} \right)\). Gọi \(M\) là trung điểm của \(AB\), mặt phẳng qua \(SM\) và song song với \(BC\), cắt \(AC\) tại \(N\). Biết góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) bằng \({60^ \circ }\). Khoảng cách giữa hai đường thẳng \(AB\) và \(SN\) là
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(B,AB = BC = 2a\), hai mặt phẳng \(\left( {SAB} \right)\) và (\(SAC\)) cùng vuông góc với mặt phẳng \(\left( {ABC} \right)\). Gọi \(M\) là trung điểm của \(AB\), mặt phẳng qua \(SM\) và song song với \(BC\), cắt \(AC\) tại \(N\). Biết góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) bằng \({60^ \circ }\). Khoảng cách giữa hai đường thẳng \(AB\) và \(SN\) là
Quảng cáo
Trả lời:
Đáp án đúng là A
Phương pháp giải
Để tính khoảng cách giữa hai đường thẳng chéo nhau, ta có thể dựng một mặt phẳng chứa một trong hai đường và song song với đường còn lại, rồi tính khoảng cách từ một điểm bất kì trên đường còn lại đến mặt phẳng vừa dựng được.
Lời giải

Qua \(N\) vẽ đường thẳng \(d\) song song với \(AB\), gọi I là giao điểm của \(d\) và \(BC\). Gọi \(H\) là hình chiếu của \(A\) trên \(NI,K\) là hình chiếu của \(A\) trên \(SH\). Khi đó \(AK \bot \left( {SHN} \right) \Rightarrow AK = {d_{\left[ {A,\left( {SHN} \right)} \right]}}\).
\(AHIB\) là hình chữ nhật nên \(AH = BI = \frac{{BC}}{2} = \frac{{2a}}{2} = a\).
Góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) bằng \({60^ \circ }\) nên \(\widehat {SBA} = {60^ \circ }\).
\(SA = AB.\tan \widehat {SBA} = 2a.{\rm{tan}}{60^ \circ } = 2a\sqrt 3 \).
Ta có \(\frac{1}{{A{K^2}}} = \frac{1}{{A{H^2}}} + \frac{1}{{S{A^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{{(2a\sqrt 3 )}^2}}} \Rightarrow AK = \frac{{2a\sqrt {39} }}{{13}}\).
Vì \(AB//\left( {SHN} \right)\) nên \({d_{\left( {AB,SN} \right)}} = {d_{\left[ {AB,\left( {SHN} \right)} \right]}} = {d_{\left[ {A,\left( {SHN} \right)} \right]}} = AK = \frac{{2a\sqrt {39} }}{{13}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là B
Phương pháp giải
Áp dụng công thức: \(T = A.{(1 + r)^n}\).
Lời giải
Số kì hạn (tháng) trả lãi của anh Thành sau 3 năm là: \(3.12 = 36\) (tháng)
Số tiền cả gốc lẫn lãi anh Thành phải trả cho ngân hàng sau đúng 3 năm kể từ ngày vay là:
\(400.{(1 + 1{\rm{\% }})^{36}} \approx 572,3\) (triệu đồng)
Vậy trong các số đề cho, số tiền anh Thành phải trả gần nhất với 573 triệu đồng.
Lời giải
Đáp án đúng là D
Phương pháp giải
Sự tương giao giữa hai đồ thị.
Lời giải
\({\left( {2{x^2} + 4x + 2} \right)^{\frac{3}{4}}}.f\left( {{x^2} + 2x + 1} \right) = 1 \Leftrightarrow f\left( {{x^2} + 2x + 1} \right) = {\left[ {2\left( {{x^2} + 2x + 1} \right)} \right]^{ - \frac{3}{4}}}\) (*)
Đặt \(t = {x^2} + 2x + 1\). Ta có \(t = {(x + 1)^2} \ge 0\). Khi đó (*) trở thành \(f\left( t \right) = {(2t)^{ - \frac{3}{4}}}\).
Xét hàm số \(g\left( t \right) = {(2t)^{ - \frac{3}{4}}}\) trên \(\left[ {0; + \infty } \right)\).
TXĐ: \(D = \left( {0; + \infty } \right)\).
\(g'\left( t \right) = - \frac{3}{2}{(2t)^{ - \frac{7}{4}}} < 0\forall x \in \left( {0; + \infty } \right)\).
Do đó hàm số \(g\left( t \right) = {(2t)^{ - \frac{3}{4}}}\) nghịch biến trên \(\left( {0; + \infty } \right)\).
BBT

Dựa vào bảng biến thiên, ta có sự tương giao của hai đồ thị hàm số \(y = f\left( t \right)\) và \(y = g\left( t \right)\) như sau:

Do đó, phương trình \(f\left( t \right) = {(2t)^{ - \frac{3}{4}}}\) có hai nghiệm \(t\) dương phân biệt là \({t_1}\) và \({t_2}\).
Suy ra \({x^2} + 2x + 1 = {t_1}\,\,(1) \vee {x^2} + 2x + 1 = {t_2}\,\,(2)\).
Phương trình (1) có \({\rm{\Delta '}} = 1 - 1 + {t_1} = {t_1} > 0\) nên có hai nghiệm phân biệt \({x_1},{x_2}\).
Phương trình (2) có \({\rm{\Delta '}} = 1 - 1 + {t_2} = {t_2} > 0\) nên có hai nghiệm phân biệt \({x_3},{x_4}\) khác \({x_1},{x_2}\).
Vậy phương trình \({\left( {2{x^2} + 4x + 2} \right)^{\frac{3}{4}}}.f\left( {{x^2} + 2x + 1} \right) = 1\) có số nghiệm là 4.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

