Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(B,AB = BC = 2a\), hai mặt phẳng \(\left( {SAB} \right)\) và (\(SAC\)) cùng vuông góc với mặt phẳng \(\left( {ABC} \right)\). Gọi \(M\) là trung điểm của \(AB\), mặt phẳng qua \(SM\) và song song với \(BC\), cắt \(AC\) tại \(N\). Biết góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) bằng \({60^ \circ }\). Khoảng cách giữa hai đường thẳng \(AB\) và \(SN\) là
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(B,AB = BC = 2a\), hai mặt phẳng \(\left( {SAB} \right)\) và (\(SAC\)) cùng vuông góc với mặt phẳng \(\left( {ABC} \right)\). Gọi \(M\) là trung điểm của \(AB\), mặt phẳng qua \(SM\) và song song với \(BC\), cắt \(AC\) tại \(N\). Biết góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) bằng \({60^ \circ }\). Khoảng cách giữa hai đường thẳng \(AB\) và \(SN\) là
Quảng cáo
Trả lời:
Đáp án đúng là A
Phương pháp giải
Để tính khoảng cách giữa hai đường thẳng chéo nhau, ta có thể dựng một mặt phẳng chứa một trong hai đường và song song với đường còn lại, rồi tính khoảng cách từ một điểm bất kì trên đường còn lại đến mặt phẳng vừa dựng được.
Lời giải

Qua \(N\) vẽ đường thẳng \(d\) song song với \(AB\), gọi I là giao điểm của \(d\) và \(BC\). Gọi \(H\) là hình chiếu của \(A\) trên \(NI,K\) là hình chiếu của \(A\) trên \(SH\). Khi đó \(AK \bot \left( {SHN} \right) \Rightarrow AK = {d_{\left[ {A,\left( {SHN} \right)} \right]}}\).
\(AHIB\) là hình chữ nhật nên \(AH = BI = \frac{{BC}}{2} = \frac{{2a}}{2} = a\).
Góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) bằng \({60^ \circ }\) nên \(\widehat {SBA} = {60^ \circ }\).
\(SA = AB.\tan \widehat {SBA} = 2a.{\rm{tan}}{60^ \circ } = 2a\sqrt 3 \).
Ta có \(\frac{1}{{A{K^2}}} = \frac{1}{{A{H^2}}} + \frac{1}{{S{A^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{{(2a\sqrt 3 )}^2}}} \Rightarrow AK = \frac{{2a\sqrt {39} }}{{13}}\).
Vì \(AB//\left( {SHN} \right)\) nên \({d_{\left( {AB,SN} \right)}} = {d_{\left[ {AB,\left( {SHN} \right)} \right]}} = {d_{\left[ {A,\left( {SHN} \right)} \right]}} = AK = \frac{{2a\sqrt {39} }}{{13}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là A
Phương pháp giải
Vận dụng công thức tính động năng trung bình: \[\overline {{W_{\rm{d}}}} = \frac{3}{2}kT\]
Vận dụng công thức tính áp suất khí: \[p = {n_0}kT\]
Lời giải
Động năng trung bình của các phân tử và mật độ phân tử khí
- Động năng trung bình:
\[\overline {{W_d}} = \frac{3}{2}kT = \frac{3}{2}.1,{38.10^{ - 23}}(27 + 273) = 6,{21.10^{ - 21}}J\]
- Mật độ phân tử: \[p = {n_0}kT \Rightarrow {n_0} = \frac{p}{{kT}}\]
\[ \Rightarrow {n_0} = \frac{{1,{{5.10}^5}}}{{1,{{38.10}^{ - 23}}.300}} = 3,{6.10^{25}}{{\rm{m}}^{ - 3}}\]
Vậy: Động năng trung bình của các phân tử khí là \[\overline {{W_d}} = 6,{21.10^{ - 21}}J\] và mật độ phân tử khí là \[{n_0} = 3,{6.10^{25}}{m^{ - 3}}\]
Lời giải
Đáp án đúng là A
Phương pháp giải
Công suất hoạt động của tấm pin: \[P = IS\]
Sử dụng biểu thức tính nhiệt lượng: \[Q = mc{\rm{\Delta }}t\]
Vận dụng biểu thức tính hiệu suất.
Lời giải
Công suất hoạt động của 2 tấm thu năng lượng: \[P = IS = 1000.2.2.1,25 = 5000{\rm{W}}\]
Nhiệt lượng máy thu được trong t = 2h = 7200s là:
\[Q = H.P.{\rm{\Delta }}t = 0,96.5000.7200 = {3456.10^4}J\]
Mặt khác, ta có: \[Q = mc{\rm{\Delta }}t\]
⇒ Độ tăng nhiệt độ của 150kg nước khi máy hoạt động:
\[{\rm{\Delta }}T = \frac{Q}{{mc}} = \frac{{{{3456.10}^4}}}{{150.4180}} \approx {55^o}C\]
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

