Câu hỏi:

07/01/2026 7 Lưu

Cho hình lăng trụ đều ABC. A'B'C' có cạnh đáy bằng a. Đường thẳng AB' tạo với mặt phẳng (BCC'B') một góc 30°. Biết thể tích khối lăng trụ đã cho là a36k  tính giá trị của biểu thức T =k2 (nhập đáp án vào ô trống).

Đáp án:  ___

 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1. 16

Đáp án đúng là "16"

Phương pháp giải

Thể tích khối lăng trụ: \(V = h.S\), trong đó \(h\) là chiều cao lăng trụ, \(S\) là diện tích đáy của lăng trụ.

Lời giải

Gọi \(H\) là hình chiếu của \(A\) trên \(BC\). Khi đó \(AH = \frac{{a\sqrt 3 }}{2}\)\(AH \bot \left( {BCC'B'} \right)\) nên góc giữa \(AB'\) và ( \(BCC'B\)) là \(\widehat {AB'H} = {30^ \circ }\).

\({\rm{\Delta }}AHB'\) vuông tại \(H\)\(B'H = \frac{{AH}}{{{\rm{tan}}\widehat {AB'H}}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{{\rm{tan}}{{30}^ \circ }}} = \frac{{3a}}{2}\).

Do đó \(BB' = \sqrt {B'{H^2} - B{H^2}} = \sqrt {{{\left( {\frac{{3a}}{2}} \right)}^2} - {{\left( {\frac{a}{2}} \right)}^2}} = a\sqrt 2 \).

Thể tích của khối lăng trụ \(ABC.A'B'C'\) là:

\(V = S.h = \frac{{{a^2}\sqrt 3 }}{4}.\sqrt 2 a = \frac{{{a^3}\sqrt 6 }}{4}\).

Do đó \(k = 4 \Rightarrow T = {4^2} = 16\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là B

Phương pháp giải

Áp dụng công thức: \(T = A.{(1 + r)^n}\).

Lời giải

Số kì hạn (tháng) trả lãi của anh Thành sau 3 năm là: \(3.12 = 36\) (tháng)

Số tiền cả gốc lẫn lãi anh Thành phải trả cho ngân hàng sau đúng 3 năm kể từ ngày vay là:

\(400.{(1 + 1{\rm{\% }})^{36}} \approx 572,3\) (triệu đồng)

Vậy trong các số đề cho, số tiền anh Thành phải trả gần nhất với 573 triệu đồng.

Lời giải

Đáp án đúng là D

Phương pháp giải

Sự tương giao giữa hai đồ thị.

Lời giải

\({\left( {2{x^2} + 4x + 2} \right)^{\frac{3}{4}}}.f\left( {{x^2} + 2x + 1} \right) = 1 \Leftrightarrow f\left( {{x^2} + 2x + 1} \right) = {\left[ {2\left( {{x^2} + 2x + 1} \right)} \right]^{ - \frac{3}{4}}}\) (*)

Đặt \(t = {x^2} + 2x + 1\). Ta có \(t = {(x + 1)^2} \ge 0\). Khi đó (*) trở thành \(f\left( t \right) = {(2t)^{ - \frac{3}{4}}}\).

Xét hàm số \(g\left( t \right) = {(2t)^{ - \frac{3}{4}}}\) trên \(\left[ {0; + \infty } \right)\).

TXĐ: \(D = \left( {0; + \infty } \right)\).

\(g'\left( t \right) = - \frac{3}{2}{(2t)^{ - \frac{7}{4}}} < 0\forall x \in \left( {0; + \infty } \right)\).

Do đó hàm số \(g\left( t \right) = {(2t)^{ - \frac{3}{4}}}\) nghịch biến trên \(\left( {0; + \infty } \right)\).

BBT

Cho hàm số y = f( x ) liên tục trên R và có đồ thị như hình vẽ. (ảnh 2)

Dựa vào bảng biến thiên, ta có sự tương giao của hai đồ thị hàm số \(y = f\left( t \right)\)\(y = g\left( t \right)\) như sau:

Cho hàm số y = f( x ) liên tục trên R và có đồ thị như hình vẽ. (ảnh 3)

Do đó, phương trình \(f\left( t \right) = {(2t)^{ - \frac{3}{4}}}\) có hai nghiệm \(t\) dương phân biệt là \({t_1}\)\({t_2}\).

Suy ra \({x^2} + 2x + 1 = {t_1}\,\,(1) \vee {x^2} + 2x + 1 = {t_2}\,\,(2)\).

Phương trình (1) có \({\rm{\Delta '}} = 1 - 1 + {t_1} = {t_1} > 0\) nên có hai nghiệm phân biệt \({x_1},{x_2}\).

Phương trình (2) có \({\rm{\Delta '}} = 1 - 1 + {t_2} = {t_2} > 0\) nên có hai nghiệm phân biệt \({x_3},{x_4}\) khác \({x_1},{x_2}\).

Vậy phương trình \({\left( {2{x^2} + 4x + 2} \right)^{\frac{3}{4}}}.f\left( {{x^2} + 2x + 1} \right) = 1\) có số nghiệm là 4.

Câu 3

A. It is a factor that is not related to sleep deprivation.
B. It is an easy solution to sleep deprivation.
C. It is a temptation that prevents us from sleeping.
D. It is an ineffective means of communication.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Bảng số liệu trên phù hợp với địa điểm nằm ở vùng khí hậu Tây Nguyên.
B. Bảng số liệu trên phù hợp với địa điểm nằm ở vùng khí hậu Nam Bộ.
C. Bảng số liệu trên phù hợp với địa điểm nằm ở vùng khí hậu Nam Trung Bộ.
D. Bảng số liệu trên phù hợp với địa điểm nằm ở vùng khí hậu Đồng bằng Bắc Bộ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP