Số giá trị nguyên âm của tham số \(m\) để hàm số \(y = \frac{1}{4}{x^4} + mx - \frac{3}{{2x}}\) đồng biến trên \(\left( {0; + \infty } \right)\) là:
Quảng cáo
Trả lời:
Đáp án đúng là A
Phương pháp giải
Sử dụng định lý mở rộng về quan hệ giữa tính đơn điệu của hàm số và dấu của đạo hàm: Hàm số \(y = f\left( x \right)\) đồng biến trên \(K\) khi và chỉ khi \(f'\left( x \right) \ge 0,\forall x \in K\) và \(f'\left( x \right) = 0\) chỉ tại một số hữu hạn điểm thuộc \(K\). Hàm số \(y = f\left( x \right)\) nghịch biến trên \(K\) khi và chỉ khi \(f'\left( x \right) \le 0,\forall x \in K\) và \(f'\left( x \right) = 0\) chỉ tại một số hữu hạn điểm thuộc \(K\).
Lời giải
TXĐ: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\)
\(y = \frac{1}{4}{x^4} + mx - \frac{3}{{2x}}\)
\(y' = {x^3} + m + \frac{3}{{2{x^2}}}\)
Để hàm số \(y = \frac{1}{3}{x^3} + m{x^2} + 4x - m\) đồng biến trên \(\left( {0; + \infty } \right)\) thì \(y' \ge 0\forall x \in \left( {0; + \infty } \right)\)
\( \Leftrightarrow {x^3} + m + \frac{3}{{2{x^2}}} \ge 0\forall x \in \left( {0; + \infty } \right)\)
\( \Leftrightarrow m \ge - {x^3} - \frac{3}{{2{x^2}}}\forall x \in \left( {0; + \infty } \right)\)
Xét hàm số \(g\left( x \right) = - {x^3} - \frac{3}{{2{x^2}}}\) trên \(\left( {0; + \infty } \right)\)
\(g'\left( x \right) = - 3{x^2} + \frac{3}{{{x^3}}}\)
\(g'\left( x \right) = 0 \Leftrightarrow x = 1\)
BBT

Dựa vào BBT, ta có \(m \ge - {x^3} - \frac{3}{{2{x^2}}}\forall x \in \left( {0; + \infty } \right) \Leftrightarrow m \ge - \frac{5}{2}\). Do \(m\) nguyên âm nên có 2 giá trị của tham số \(m\) thỏa yêu cầu bài toán.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là A
Phương pháp giải
Vận dụng công thức tính động năng trung bình: \[\overline {{W_{\rm{d}}}} = \frac{3}{2}kT\]
Vận dụng công thức tính áp suất khí: \[p = {n_0}kT\]
Lời giải
Động năng trung bình của các phân tử và mật độ phân tử khí
- Động năng trung bình:
\[\overline {{W_d}} = \frac{3}{2}kT = \frac{3}{2}.1,{38.10^{ - 23}}(27 + 273) = 6,{21.10^{ - 21}}J\]
- Mật độ phân tử: \[p = {n_0}kT \Rightarrow {n_0} = \frac{p}{{kT}}\]
\[ \Rightarrow {n_0} = \frac{{1,{{5.10}^5}}}{{1,{{38.10}^{ - 23}}.300}} = 3,{6.10^{25}}{{\rm{m}}^{ - 3}}\]
Vậy: Động năng trung bình của các phân tử khí là \[\overline {{W_d}} = 6,{21.10^{ - 21}}J\] và mật độ phân tử khí là \[{n_0} = 3,{6.10^{25}}{m^{ - 3}}\]
Lời giải
Đáp án đúng là A
Phương pháp giải
Công suất hoạt động của tấm pin: \[P = IS\]
Sử dụng biểu thức tính nhiệt lượng: \[Q = mc{\rm{\Delta }}t\]
Vận dụng biểu thức tính hiệu suất.
Lời giải
Công suất hoạt động của 2 tấm thu năng lượng: \[P = IS = 1000.2.2.1,25 = 5000{\rm{W}}\]
Nhiệt lượng máy thu được trong t = 2h = 7200s là:
\[Q = H.P.{\rm{\Delta }}t = 0,96.5000.7200 = {3456.10^4}J\]
Mặt khác, ta có: \[Q = mc{\rm{\Delta }}t\]
⇒ Độ tăng nhiệt độ của 150kg nước khi máy hoạt động:
\[{\rm{\Delta }}T = \frac{Q}{{mc}} = \frac{{{{3456.10}^4}}}{{150.4180}} \approx {55^o}C\]
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

