Cho hàm số y = f(x) , đạo hàm y = f'(x) có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-10;10] để hàm số đồng biến trên khoảng (nhập đáp án vào ô trống).

Đáp án: __
Quảng cáo
Trả lời:
Đáp án đúng là "9"
Phương pháp giải
Sử dụng công thức đạo hàm hàm hợp: Cho \(y = f\left( u \right);u = u\left( x \right)\). Khi đó \({y_x}\;' = f'\left( u \right).u'\left( x \right)\).
Sử dụng định lý quan hệ giữa tính đơn điệu của hàm số và dấu của đạo hàm: Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(K\). Nếu \(f'\left( x \right) > 0,\forall x \in K\) thì hàm số \(y = f\left( x \right)\) đồng biến trên \(K\). Nếu \(f'\left( x \right) < 0,\forall x \in K\) thì hàm số \(y = f\left( x \right)\) nghịch biến trên \(K\).
Lời giải
\(g\left( x \right) = 2mx - f\left( {2x - 2} \right)\)
\(g'\left( x \right) = 2m - 2.f'\left( {2x - 2} \right)\)
Hàm số \(g\left( x \right) = 2mx - f\left( {2x - 2} \right)\) đồng biến trên khoảng \(\left( {1; + \infty } \right)\)
\( \Leftrightarrow g'\left( x \right) \ge 0,\forall x \in \left( {1; + \infty } \right) \Leftrightarrow 2m - 2.f'\left( {2x - 2} \right) \ge 0,\forall x \in \left( {1; + \infty } \right)\)
\( \Leftrightarrow f'\left( {2x - 2} \right) \le m,\forall x \in \left( {1; + \infty } \right)\).
Đặt \(t = 2x - 2\). Vì \(x \in \left( {1; + \infty } \right)\) nên \(t \in \left( {0; + \infty } \right)\).
Xét hàm số \(f'\left( t \right)\) trên khoảng \(\left( {0; + \infty } \right)\)
Theo hình vẽ đề cho, ta có \(f'\left( x \right) \le 2\forall x \in \left( {0; + \infty } \right) \Rightarrow f'\left( t \right) \le 2\forall t \in \left( {0; + \infty } \right)\).
Do đó \(f'\left( t \right) \le m,\forall t \in \left( {0; + \infty } \right) \Rightarrow m \ge 2\). Mà \(m\) là số nguyên thuộc đoạn \(\left[ { - 10;10} \right]\) nên có 9 giá trị của tham số \(m\) thỏa yêu cầu bài toán.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là B
Phương pháp giải
Áp dụng công thức: \(T = A.{(1 + r)^n}\).
Lời giải
Số kì hạn (tháng) trả lãi của anh Thành sau 3 năm là: \(3.12 = 36\) (tháng)
Số tiền cả gốc lẫn lãi anh Thành phải trả cho ngân hàng sau đúng 3 năm kể từ ngày vay là:
\(400.{(1 + 1{\rm{\% }})^{36}} \approx 572,3\) (triệu đồng)
Vậy trong các số đề cho, số tiền anh Thành phải trả gần nhất với 573 triệu đồng.
Lời giải
Đáp án đúng là D
Phương pháp giải
Sự tương giao giữa hai đồ thị.
Lời giải
\({\left( {2{x^2} + 4x + 2} \right)^{\frac{3}{4}}}.f\left( {{x^2} + 2x + 1} \right) = 1 \Leftrightarrow f\left( {{x^2} + 2x + 1} \right) = {\left[ {2\left( {{x^2} + 2x + 1} \right)} \right]^{ - \frac{3}{4}}}\) (*)
Đặt \(t = {x^2} + 2x + 1\). Ta có \(t = {(x + 1)^2} \ge 0\). Khi đó (*) trở thành \(f\left( t \right) = {(2t)^{ - \frac{3}{4}}}\).
Xét hàm số \(g\left( t \right) = {(2t)^{ - \frac{3}{4}}}\) trên \(\left[ {0; + \infty } \right)\).
TXĐ: \(D = \left( {0; + \infty } \right)\).
\(g'\left( t \right) = - \frac{3}{2}{(2t)^{ - \frac{7}{4}}} < 0\forall x \in \left( {0; + \infty } \right)\).
Do đó hàm số \(g\left( t \right) = {(2t)^{ - \frac{3}{4}}}\) nghịch biến trên \(\left( {0; + \infty } \right)\).
BBT

Dựa vào bảng biến thiên, ta có sự tương giao của hai đồ thị hàm số \(y = f\left( t \right)\) và \(y = g\left( t \right)\) như sau:

Do đó, phương trình \(f\left( t \right) = {(2t)^{ - \frac{3}{4}}}\) có hai nghiệm \(t\) dương phân biệt là \({t_1}\) và \({t_2}\).
Suy ra \({x^2} + 2x + 1 = {t_1}\,\,(1) \vee {x^2} + 2x + 1 = {t_2}\,\,(2)\).
Phương trình (1) có \({\rm{\Delta '}} = 1 - 1 + {t_1} = {t_1} > 0\) nên có hai nghiệm phân biệt \({x_1},{x_2}\).
Phương trình (2) có \({\rm{\Delta '}} = 1 - 1 + {t_2} = {t_2} > 0\) nên có hai nghiệm phân biệt \({x_3},{x_4}\) khác \({x_1},{x_2}\).
Vậy phương trình \({\left( {2{x^2} + 4x + 2} \right)^{\frac{3}{4}}}.f\left( {{x^2} + 2x + 1} \right) = 1\) có số nghiệm là 4.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

