Số đường tiệm cận của đồ thị hàm số \(y = \frac{{\sqrt {x + 6} - 3}}{{{x^2} - 2x - 3}}\) là
Quảng cáo
Trả lời:
Đáp án đúng là C
Phương pháp giải
Để xác định phương trình đường tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\), ta có thể làm như sau:
Bước 1: Tìm TXĐ của \(f\left( x \right)\).
Bước 2: Tìm những điểm \({x_0}\) mà hàm số không xác định nhưng có lân cận trái hoặc lân cận phải nằm trong tập xác định.
Bước 3: Tính các giới hạn một bên của hàm số tại điểm \({x_0}\): .
Bước 4: Kết luận.
Để xác định tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\), ta có thể làm như sau:
Bước 1:Tìm TXĐ của \(f\left( x \right)\).
Bước 2: Tính rồi kết luận.
Lời giải
TXĐ: \(D = \left[ { - 6; + \infty } \right)\backslash \left\{ { - 1;3} \right\}\).
Ta có: . Do đó đường thẳng \(x = 3\) không phải là tiệm cận đứng.
Ta có: . Do đó đường thẳng \(x = - 1\) là tiệm cận đứng.
Ta có: . Do đó đường thẳng \(y = 0\) là tiệm cận ngang.
Không tồn tại giới hạn của hàm số đã cho khi \(x\) tiến đến \( - \infty \), do TXĐ của hàm số:
\(D = \left[ { - 6; + \infty } \right)\backslash \left\{ { - 1;3} \right\}\).
Vậy đồ thị hàm số đã cho có 1 tiệm cận đứng và 1 tiệm cận ngang, tức là có tổng cộng 2 đường tiệm cận.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là A
Phương pháp giải
Vận dụng công thức tính động năng trung bình: \[\overline {{W_{\rm{d}}}} = \frac{3}{2}kT\]
Vận dụng công thức tính áp suất khí: \[p = {n_0}kT\]
Lời giải
Động năng trung bình của các phân tử và mật độ phân tử khí
- Động năng trung bình:
\[\overline {{W_d}} = \frac{3}{2}kT = \frac{3}{2}.1,{38.10^{ - 23}}(27 + 273) = 6,{21.10^{ - 21}}J\]
- Mật độ phân tử: \[p = {n_0}kT \Rightarrow {n_0} = \frac{p}{{kT}}\]
\[ \Rightarrow {n_0} = \frac{{1,{{5.10}^5}}}{{1,{{38.10}^{ - 23}}.300}} = 3,{6.10^{25}}{{\rm{m}}^{ - 3}}\]
Vậy: Động năng trung bình của các phân tử khí là \[\overline {{W_d}} = 6,{21.10^{ - 21}}J\] và mật độ phân tử khí là \[{n_0} = 3,{6.10^{25}}{m^{ - 3}}\]
Lời giải
Đáp án đúng là A
Phương pháp giải
Công suất hoạt động của tấm pin: \[P = IS\]
Sử dụng biểu thức tính nhiệt lượng: \[Q = mc{\rm{\Delta }}t\]
Vận dụng biểu thức tính hiệu suất.
Lời giải
Công suất hoạt động của 2 tấm thu năng lượng: \[P = IS = 1000.2.2.1,25 = 5000{\rm{W}}\]
Nhiệt lượng máy thu được trong t = 2h = 7200s là:
\[Q = H.P.{\rm{\Delta }}t = 0,96.5000.7200 = {3456.10^4}J\]
Mặt khác, ta có: \[Q = mc{\rm{\Delta }}t\]
⇒ Độ tăng nhiệt độ của 150kg nước khi máy hoạt động:
\[{\rm{\Delta }}T = \frac{Q}{{mc}} = \frac{{{{3456.10}^4}}}{{150.4180}} \approx {55^o}C\]
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

