Trên mặt phẳng tọa độ \(Oxy\), cho parabol \(\left( P \right):y = \frac{1}{4}{x^2}\). Gọi \(A\) là điểm thuộc \(\left( P \right)\) có hoành độ bằng \(4\); \(B,C\)lần lượt là hình chiếu của \(A\) trên các trục tọa độ \(Ox,Oy\). Gọi \({S_1}\) là diện tích hình phẳng giới hạn bởi \(\left( P \right),AB\) và trục hoành; \({S_2}\) là diện tích hình phẳng giới hạn bởi \(\left( P \right),AC\) và trục tung. Tỉ số \(\frac{{{S_1}}}{{{S_2}}}\) bằng:
Trên mặt phẳng tọa độ \(Oxy\), cho parabol \(\left( P \right):y = \frac{1}{4}{x^2}\). Gọi \(A\) là điểm thuộc \(\left( P \right)\) có hoành độ bằng \(4\); \(B,C\)lần lượt là hình chiếu của \(A\) trên các trục tọa độ \(Ox,Oy\). Gọi \({S_1}\) là diện tích hình phẳng giới hạn bởi \(\left( P \right),AB\) và trục hoành; \({S_2}\) là diện tích hình phẳng giới hạn bởi \(\left( P \right),AC\) và trục tung. Tỉ số \(\frac{{{S_1}}}{{{S_2}}}\) bằng:
Quảng cáo
Trả lời:
Đáp án đúng là B
Phương pháp giải
Diện tích hình phẳng giới hạn bởi các đồ thị hàm số \(y = f\left( x \right),y = g\left( x \right)\) và các đường thẳng \(x = a,\,\,x = b{\rm{\;}}\) (\(f\left( x \right),g\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right])\) là: .
Lời giải
\(A\) là điểm thuộc \(\left( P \right)\) có hoành độ bằng 4 nên \(A\left( {4;4} \right)\).
\(B,C\) lần lượt là hình chiếu của \(A\) trên các trục tọa độ \(Ox,Oy\) nên \(B\left( {4;0} \right);C\left( {0;4} \right)\).
\({S_1}\) là diện tích hình phẳng giới hạn bởi \(\left( P \right)\), \(AB\) và trục hoành nên .
\({S_2}\) là diện tích hình phẳng giới hạn bởi \(\left( P \right)\), \(AC\) và trục tung nên \({S_2} = {4^2} - \frac{{16}}{3} = \frac{{32}}{3}\).
Vậy \(\frac{{{S_1}}}{{{S_2}}} = \frac{{\frac{{16}}{3}}}{{\frac{{32}}{3}}} = \frac{1}{2}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là B
Phương pháp giải
Áp dụng công thức: \(T = A.{(1 + r)^n}\).
Lời giải
Số kì hạn (tháng) trả lãi của anh Thành sau 3 năm là: \(3.12 = 36\) (tháng)
Số tiền cả gốc lẫn lãi anh Thành phải trả cho ngân hàng sau đúng 3 năm kể từ ngày vay là:
\(400.{(1 + 1{\rm{\% }})^{36}} \approx 572,3\) (triệu đồng)
Vậy trong các số đề cho, số tiền anh Thành phải trả gần nhất với 573 triệu đồng.
Lời giải
Đáp án đúng là D
Phương pháp giải
Sự tương giao giữa hai đồ thị.
Lời giải
\({\left( {2{x^2} + 4x + 2} \right)^{\frac{3}{4}}}.f\left( {{x^2} + 2x + 1} \right) = 1 \Leftrightarrow f\left( {{x^2} + 2x + 1} \right) = {\left[ {2\left( {{x^2} + 2x + 1} \right)} \right]^{ - \frac{3}{4}}}\) (*)
Đặt \(t = {x^2} + 2x + 1\). Ta có \(t = {(x + 1)^2} \ge 0\). Khi đó (*) trở thành \(f\left( t \right) = {(2t)^{ - \frac{3}{4}}}\).
Xét hàm số \(g\left( t \right) = {(2t)^{ - \frac{3}{4}}}\) trên \(\left[ {0; + \infty } \right)\).
TXĐ: \(D = \left( {0; + \infty } \right)\).
\(g'\left( t \right) = - \frac{3}{2}{(2t)^{ - \frac{7}{4}}} < 0\forall x \in \left( {0; + \infty } \right)\).
Do đó hàm số \(g\left( t \right) = {(2t)^{ - \frac{3}{4}}}\) nghịch biến trên \(\left( {0; + \infty } \right)\).
BBT

Dựa vào bảng biến thiên, ta có sự tương giao của hai đồ thị hàm số \(y = f\left( t \right)\) và \(y = g\left( t \right)\) như sau:

Do đó, phương trình \(f\left( t \right) = {(2t)^{ - \frac{3}{4}}}\) có hai nghiệm \(t\) dương phân biệt là \({t_1}\) và \({t_2}\).
Suy ra \({x^2} + 2x + 1 = {t_1}\,\,(1) \vee {x^2} + 2x + 1 = {t_2}\,\,(2)\).
Phương trình (1) có \({\rm{\Delta '}} = 1 - 1 + {t_1} = {t_1} > 0\) nên có hai nghiệm phân biệt \({x_1},{x_2}\).
Phương trình (2) có \({\rm{\Delta '}} = 1 - 1 + {t_2} = {t_2} > 0\) nên có hai nghiệm phân biệt \({x_3},{x_4}\) khác \({x_1},{x_2}\).
Vậy phương trình \({\left( {2{x^2} + 4x + 2} \right)^{\frac{3}{4}}}.f\left( {{x^2} + 2x + 1} \right) = 1\) có số nghiệm là 4.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


