Trong không gian \(Oxyz\), cho điểm \(A\left( { - 1;2; - 3} \right)\), mặt phẳng \(\left( P \right):6x - 2y - 3z + 1 = 0\) và đường thẳng \(d:\frac{{x - 4}}{3} = \frac{{y - 1}}{2} = \frac{{z + 2}}{{ - 5}}\). Phương trình đường thẳng \({\rm{\Delta }}\) qua \(A\), cắt \(d\) và song song với \(\left( P \right)\) là
Trong không gian \(Oxyz\), cho điểm \(A\left( { - 1;2; - 3} \right)\), mặt phẳng \(\left( P \right):6x - 2y - 3z + 1 = 0\) và đường thẳng \(d:\frac{{x - 4}}{3} = \frac{{y - 1}}{2} = \frac{{z + 2}}{{ - 5}}\). Phương trình đường thẳng \({\rm{\Delta }}\) qua \(A\), cắt \(d\) và song song với \(\left( P \right)\) là
Quảng cáo
Trả lời:
Đáp án đúng là A
Phương pháp giải
Điều kiện cần để đường thẳng \({\rm{\Delta }}\) song song với mặt phẳng ( \(P\) ) là \(\overrightarrow {{u_{\rm{\Delta }}}} \bot \overrightarrow {{n_P}} \).
Lời giải
Mặt phẳng \(\left( P \right):6x - 2y - 3z + 1 = 0\) có một vectơ pháp tuyến là \(\overrightarrow {{n_P}} = \left( {6; - 2; - 3} \right)\).
Gọi \(B\left( {4 + 3t;1 + 2t; - 2 - 5t} \right)\) là giao điểm của \({\rm{\Delta }}\) và \(d\).
Ta có \(\overrightarrow {{u_{\rm{\Delta }}}} = \overrightarrow {AB} = \left( {3t + 5;2t - 1; - 5t + 1} \right)\).
Điều kiện cần để đường thẳng \({\rm{\Delta }}\) song song với mặt phẳng \(\left( P \right)\) là \(\overrightarrow {{u_{\rm{\Delta }}}} \bot \overrightarrow {{n_P}} \).
Do đó \(\overrightarrow {{u_{\rm{\Delta }}}} .\overrightarrow {{n_P}} = 0 \Leftrightarrow 6\left( {3t + 5} \right) - 2\left( {2t - 1} \right) - 3\left( { - 5t + 1} \right) = 0 \Leftrightarrow t = - 1\). Suy ra \(\overrightarrow {{u_{\rm{\Delta }}}} = \left( {2; - 3;6} \right)\)
Đường thẳng \({\rm{\Delta }}\) qua điểm \(A\left( { - 1;2; - 3} \right)\) và có một vectơ chỉ phương \(\overrightarrow {{u_{\rm{\Delta }}}} = \left( {2; - 3;6} \right)\) nên phương trình của đường thẳng \({\rm{\Delta }}\) là: \(\frac{{x + 1}}{2} = \frac{{y - 2}}{{ - 3}} = \frac{{z + 3}}{6}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là B
Phương pháp giải
Áp dụng công thức: \(T = A.{(1 + r)^n}\).
Lời giải
Số kì hạn (tháng) trả lãi của anh Thành sau 3 năm là: \(3.12 = 36\) (tháng)
Số tiền cả gốc lẫn lãi anh Thành phải trả cho ngân hàng sau đúng 3 năm kể từ ngày vay là:
\(400.{(1 + 1{\rm{\% }})^{36}} \approx 572,3\) (triệu đồng)
Vậy trong các số đề cho, số tiền anh Thành phải trả gần nhất với 573 triệu đồng.
Lời giải
Đáp án đúng là D
Phương pháp giải
Sự tương giao giữa hai đồ thị.
Lời giải
\({\left( {2{x^2} + 4x + 2} \right)^{\frac{3}{4}}}.f\left( {{x^2} + 2x + 1} \right) = 1 \Leftrightarrow f\left( {{x^2} + 2x + 1} \right) = {\left[ {2\left( {{x^2} + 2x + 1} \right)} \right]^{ - \frac{3}{4}}}\) (*)
Đặt \(t = {x^2} + 2x + 1\). Ta có \(t = {(x + 1)^2} \ge 0\). Khi đó (*) trở thành \(f\left( t \right) = {(2t)^{ - \frac{3}{4}}}\).
Xét hàm số \(g\left( t \right) = {(2t)^{ - \frac{3}{4}}}\) trên \(\left[ {0; + \infty } \right)\).
TXĐ: \(D = \left( {0; + \infty } \right)\).
\(g'\left( t \right) = - \frac{3}{2}{(2t)^{ - \frac{7}{4}}} < 0\forall x \in \left( {0; + \infty } \right)\).
Do đó hàm số \(g\left( t \right) = {(2t)^{ - \frac{3}{4}}}\) nghịch biến trên \(\left( {0; + \infty } \right)\).
BBT

Dựa vào bảng biến thiên, ta có sự tương giao của hai đồ thị hàm số \(y = f\left( t \right)\) và \(y = g\left( t \right)\) như sau:

Do đó, phương trình \(f\left( t \right) = {(2t)^{ - \frac{3}{4}}}\) có hai nghiệm \(t\) dương phân biệt là \({t_1}\) và \({t_2}\).
Suy ra \({x^2} + 2x + 1 = {t_1}\,\,(1) \vee {x^2} + 2x + 1 = {t_2}\,\,(2)\).
Phương trình (1) có \({\rm{\Delta '}} = 1 - 1 + {t_1} = {t_1} > 0\) nên có hai nghiệm phân biệt \({x_1},{x_2}\).
Phương trình (2) có \({\rm{\Delta '}} = 1 - 1 + {t_2} = {t_2} > 0\) nên có hai nghiệm phân biệt \({x_3},{x_4}\) khác \({x_1},{x_2}\).
Vậy phương trình \({\left( {2{x^2} + 4x + 2} \right)^{\frac{3}{4}}}.f\left( {{x^2} + 2x + 1} \right) = 1\) có số nghiệm là 4.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

