Trong không gian Oxyz, cho ba điểm A(2;0;0); B(0;4;0); C(0;0;6). Gọi M là điểm thay đổi trên mặt phẳng ABC và N là điểm thuộc tia OM sao cho OM.ON = 12. Biết rằng khi M di động trên mặt phẳng (ABC) điểm N luôn nằm trên một mặt cầu cố định. Tính bán kính của mặt cầu đó (nhập đáp án vào ô trống).
Đáp án: ____
Quảng cáo
Trả lời:
Đáp án đúng là "7/2"
Phương pháp giải
Lời giải
Phương trình mặt phẳng \(\left( {ABC} \right):\frac{x}{2} + \frac{y}{4} + \frac{z}{6} = 1 \Leftrightarrow 6x + 3y + 2z - 12 = 0\).
Gọi \(N\left( {x,y,z} \right)\). Vì \(N\) là điểm thuộc tia \(OM\) sao cho \(OM.ON = 12\) nên \(\overrightarrow {OM} = \frac{{12}}{{O{N^2}}}\overrightarrow {ON} \).
Do đó \(M\left( {\frac{{12x}}{{{x^2} + {y^2} + {z^2}}};\frac{{12y}}{{{x^2} + {y^2} + {z^2}}};\frac{{12z}}{{{x^2} + {y^2} + {z^2}}}} \right)\).
Mặt khác \(M \in \left( {ABC} \right)\) nên
\(6.\frac{{12x}}{{{x^2} + {y^2} + {z^2}}} + 3.\frac{{12y}}{{{x^2} + {y^2} + {z^2}}} + 2.\frac{{12z}}{{{x^2} + {y^2} + {z^2}}} - 12 = 0\)
\( \Leftrightarrow 6x + 3y + 2z - \left( {{x^2} + {y^2} + {z^2}} \right) = 0 \Leftrightarrow {(x - 3)^2} + {\left( {y - \frac{3}{2}} \right)^2} + {(z - 1)^2} = \frac{{49}}{4}\).
Vậy \(N\) luôn nằm trên mặt cầu cố định \({(x - 3)^2} + {\left( {y - \frac{3}{2}} \right)^2} + {(z - 1)^2} = \frac{{49}}{4}\) có bán kính \(R = \frac{7}{2}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là A
Phương pháp giải
Vận dụng công thức tính động năng trung bình: \[\overline {{W_{\rm{d}}}} = \frac{3}{2}kT\]
Vận dụng công thức tính áp suất khí: \[p = {n_0}kT\]
Lời giải
Động năng trung bình của các phân tử và mật độ phân tử khí
- Động năng trung bình:
\[\overline {{W_d}} = \frac{3}{2}kT = \frac{3}{2}.1,{38.10^{ - 23}}(27 + 273) = 6,{21.10^{ - 21}}J\]
- Mật độ phân tử: \[p = {n_0}kT \Rightarrow {n_0} = \frac{p}{{kT}}\]
\[ \Rightarrow {n_0} = \frac{{1,{{5.10}^5}}}{{1,{{38.10}^{ - 23}}.300}} = 3,{6.10^{25}}{{\rm{m}}^{ - 3}}\]
Vậy: Động năng trung bình của các phân tử khí là \[\overline {{W_d}} = 6,{21.10^{ - 21}}J\] và mật độ phân tử khí là \[{n_0} = 3,{6.10^{25}}{m^{ - 3}}\]
Lời giải
Đáp án đúng là A
Phương pháp giải
Công suất hoạt động của tấm pin: \[P = IS\]
Sử dụng biểu thức tính nhiệt lượng: \[Q = mc{\rm{\Delta }}t\]
Vận dụng biểu thức tính hiệu suất.
Lời giải
Công suất hoạt động của 2 tấm thu năng lượng: \[P = IS = 1000.2.2.1,25 = 5000{\rm{W}}\]
Nhiệt lượng máy thu được trong t = 2h = 7200s là:
\[Q = H.P.{\rm{\Delta }}t = 0,96.5000.7200 = {3456.10^4}J\]
Mặt khác, ta có: \[Q = mc{\rm{\Delta }}t\]
⇒ Độ tăng nhiệt độ của 150kg nước khi máy hoạt động:
\[{\rm{\Delta }}T = \frac{Q}{{mc}} = \frac{{{{3456.10}^4}}}{{150.4180}} \approx {55^o}C\]
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

