Thống kê mức tiền thưởng tết của các công nhân viên ở một công ty nọ như trong bảng sau:
|
Mức tiền thưởng (triệu đồng) |
\(\left[ {5;10} \right)\) |
\(\left[ {10;15} \right)\) |
\(\left[ {15;20} \right)\) |
\(\left[ {20;25} \right)\) |
\(\left[ {25;30} \right)\) |
|
Số công nhân viên |
12 |
25 |
35 |
20 |
8 |
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là
Quảng cáo
Trả lời:
Đáp án đúng là D
Phương pháp giải
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là \({{\rm{\Delta }}_Q} = {Q_3} - {Q_1}\).
Lời giải
Cỡ mẫu \(n = 100\).
Gọi \({x_1};{x_2}; \ldots ;{x_{100}}\) là mẫu số liệu gốc gồm mức tiền thưởng của 100 công nhân viên được xếp theo thứ tự không giảm.
Ta có \({x_1}, \ldots ,{x_{12}} \in \left[ {5;10} \right),{x_{13}}, \ldots ,{x_{37}} \in \left[ {10;15} \right),{x_{38}}, \ldots ,{x_{72}} \in \left[ {15;20} \right)\),\({x_{73}}, \ldots ,{x_{92}} \in \left[ {20;25} \right),{x_{93}}, \ldots ,{x_{100}} \in \left[ {25;30} \right)\)
Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{25}} + {x_{26}}} \right) \in \left[ {10;15} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là \({Q_1} = 10 + \frac{{\frac{{100}}{4} - 12}}{{25}}.\left( {15 - 10} \right) = 12,6\).
Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{75}} + {x_{76}}} \right) \in \left[ {20;25} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu ghép nhóm là \({Q_3} = 20 + \frac{{\frac{{3.100}}{4} - \left( {12 + 25 + 35} \right)}}{{20}}.\left( {25 - 20} \right) = 20,75\).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là:
\({{\rm{\Delta }}_Q} = {Q_3} - {Q_1} = 20,75 - 12,6 = 8,15\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là B
Phương pháp giải
Áp dụng công thức: \(T = A.{(1 + r)^n}\).
Lời giải
Số kì hạn (tháng) trả lãi của anh Thành sau 3 năm là: \(3.12 = 36\) (tháng)
Số tiền cả gốc lẫn lãi anh Thành phải trả cho ngân hàng sau đúng 3 năm kể từ ngày vay là:
\(400.{(1 + 1{\rm{\% }})^{36}} \approx 572,3\) (triệu đồng)
Vậy trong các số đề cho, số tiền anh Thành phải trả gần nhất với 573 triệu đồng.
Lời giải
Đáp án đúng là D
Phương pháp giải
Sự tương giao giữa hai đồ thị.
Lời giải
\({\left( {2{x^2} + 4x + 2} \right)^{\frac{3}{4}}}.f\left( {{x^2} + 2x + 1} \right) = 1 \Leftrightarrow f\left( {{x^2} + 2x + 1} \right) = {\left[ {2\left( {{x^2} + 2x + 1} \right)} \right]^{ - \frac{3}{4}}}\) (*)
Đặt \(t = {x^2} + 2x + 1\). Ta có \(t = {(x + 1)^2} \ge 0\). Khi đó (*) trở thành \(f\left( t \right) = {(2t)^{ - \frac{3}{4}}}\).
Xét hàm số \(g\left( t \right) = {(2t)^{ - \frac{3}{4}}}\) trên \(\left[ {0; + \infty } \right)\).
TXĐ: \(D = \left( {0; + \infty } \right)\).
\(g'\left( t \right) = - \frac{3}{2}{(2t)^{ - \frac{7}{4}}} < 0\forall x \in \left( {0; + \infty } \right)\).
Do đó hàm số \(g\left( t \right) = {(2t)^{ - \frac{3}{4}}}\) nghịch biến trên \(\left( {0; + \infty } \right)\).
BBT

Dựa vào bảng biến thiên, ta có sự tương giao của hai đồ thị hàm số \(y = f\left( t \right)\) và \(y = g\left( t \right)\) như sau:

Do đó, phương trình \(f\left( t \right) = {(2t)^{ - \frac{3}{4}}}\) có hai nghiệm \(t\) dương phân biệt là \({t_1}\) và \({t_2}\).
Suy ra \({x^2} + 2x + 1 = {t_1}\,\,(1) \vee {x^2} + 2x + 1 = {t_2}\,\,(2)\).
Phương trình (1) có \({\rm{\Delta '}} = 1 - 1 + {t_1} = {t_1} > 0\) nên có hai nghiệm phân biệt \({x_1},{x_2}\).
Phương trình (2) có \({\rm{\Delta '}} = 1 - 1 + {t_2} = {t_2} > 0\) nên có hai nghiệm phân biệt \({x_3},{x_4}\) khác \({x_1},{x_2}\).
Vậy phương trình \({\left( {2{x^2} + 4x + 2} \right)^{\frac{3}{4}}}.f\left( {{x^2} + 2x + 1} \right) = 1\) có số nghiệm là 4.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

