Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a\). Tính góc tạo bởi \(B'C\) và mặt phẳng \(\left( {ABB'A'} \right)\) biết \(BB' = \frac{{a\sqrt 2 }}{2}\).
Quảng cáo
Trả lời:
Gọi \(H\) là hình chiếu của \(C\) lên \(AB\) nên \(CH \bot AB\), \[CH = \frac{{a\sqrt 3 }}{2}\] và \(HA = HB = \frac{a}{2}\).
Ta có: \(BB' \bot \left( {ABC} \right) \Rightarrow BB' \bot CH\) nên \(CH \bot \left( {ABB'A'} \right) \Rightarrow CH \bot B'H\).
Do đó, \(B'H\) là hình chiếu của \(B'C\) lên mặt phẳng \(\left( {ABB'A'} \right)\)
\[ \Rightarrow \widehat {\left[ {B'C,\left( {ABB'A'} \right)} \right]} = \widehat {\left( {B'C,BH} \right)} = \widehat {HB'C}\].
Trong \[\Delta BB'H\] vuông tại \[B\]: \[B'H = \sqrt {B{{B'}^2} + H{B^2}} = \sqrt {{{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2} + {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 3 }}{2}\].
Mặt khác, \[B'H = CH = \frac{{a\sqrt 3 }}{2}\] nên \[\Delta B'CH\] vuông cân tại \[H\] nên \[\widehat {HB'C} = 45^\circ \].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
+) Khối lượng tôm giống vụ tôm vừa qua là 100kg
+) Gọi \[x\] là khối lượng tôm giống giảm đi.
+) Khối lượng tôm thu hoạch trong 1 kg/m2 tôm gống là \[2000:100 = 20{\rm{(kg)}}\].
+) Khi giảm đi 0,2kg/m2 tôm giống thì sản lượng thu hoạch tăng thêm trên \[1\,{{\rm{m}}^{\rm{2}}}\] là \[(2400 - 2000):100 = 4\,{\rm{kg/}}{{\rm{m}}^{\rm{2}}}\]
+) \[x\] là khối lượng tôm giống giảm đi suy ra số tôm giống cần thả là \[(100 - x)\,{\rm{kg}}\].
+) Sản lượng thu hoạch được trong 1kg tôm giống là \[(20 + ax){\rm{kg}}\]
Sản lượng thu hoạch được là \[f(x) = \left( {100 - x} \right)\left( {20 + ax} \right)\]
Ta biết cứ giảm đi 20 kg tôm giống thì thu hoạch được 2400 kg tôm suy ra \[f(20) = 2400\]
\[\left( {100 - 20} \right)(20 + a.20) = 2400 \Rightarrow a = 0,5 \Rightarrow f(x) = \left( {100 - x} \right)\left( {20 + 0,5{\rm{x}}} \right) = - 0,5{{\rm{x}}^2} + 30{\rm{x}} + 2000\]
Vậy \[f(x)\] đạt giá trị lớn nhất khi \[x = 30\].
Vậy cần phải thả là \[70\,{\rm{kg}}\] tôm giống.
Câu 2
Lời giải
Chọn D
Theo giả thiết quỹ đạo của sao hỏa là elip có bán trục lớn \(a = 227,9\) triệu \(km\), bán trục nhỏ bằng \(b = 226,9\) triệu \(km\), suy ra tiêu cự \(c = \sqrt {{a^2} - {b^2}} = \sqrt {{{227,9}^2} - {{226,9}^2}} \) triệu \(km\)
Khoảng cách xa nhất giữa sao hỏa và mặt trời là:
\(a + c = 227,9 + \sqrt {{{227,9}^2} - {{226,9}^2}} \approx 249,22604\) triệu \(km\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) [VD,VDC] Xác suất chọn được 6 viên bi đủ ba màu, đồng thời ba số \(x - y,y - z,z - x\) theo thứ tự lập thành cấp số cộng là \(\frac{{40}}{{221}}\).
b) [TH] Xác suất chọn được ít nhất một viên bi màu xanh nhỏ hơn \(0,95\).
c) [TH] Xác suất chọn được 6 viên bi toàn màu xanh là \(\frac{1}{{2652}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Một chiếc máy bay đang bay trong hệ trục toạ độ \[Oxyz\] với mặt phẳng \[(Oxy)\] là mặt đất như hình vẽ. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/blobid7-1767809067.png)
![Từ một tấm bìa mỏng hình lục giác đều cạnh \[4\sqrt 3 \;dm\], bạn An cắt bỏ sáu tam giác cân bằng nhau có cạnh đáy là cạnh của hình lục giác đều ban đầu (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/blobid9-1767809168.png)