Để đo chiều dài của một dãy phòng học, do không có thước để đo trực tiếp, nên một học sinh đã làm như sau: Lấy một cuộn dây chỉ mảnh, không giãn, căng và đo lấy một đoạn bằng chiều dài của dãy phòng, sau đó gấp đoạn chỉ đó làm 81 phần bằng nhau. Dùng một con lắc đơn có chiều dài dây treo bằng chiều dài của một phần vừa gấp, kích thích cho con lắc dao động với biên độ góc nhỏ thì thấy con lắc thực hiện được 10 dao động toàn phần trong 18 giây. Lấy g = 9,8 m/s2. Dãy phòng học mà bạn học sinh đo được có chiều dài gần nhất với kết quả nào sau đây?
Quảng cáo
Trả lời:
Đáp án đúng là B
Phương pháp giải
Sử dụng công thức tính chu kì con lắc đơn: \[T = 2\pi \sqrt {\frac{\ell }{g}} \]
Tìm các đại lượng - Viết phương trình dao động
Lời giải
Gọi chiều dài là con lắc đơn là \[\ell \] ta có chu kì của con lắc là: \[T = 2\pi \sqrt {\frac{\ell }{g}} \]
Mặt khác: \[T = \frac{t}{n}\]
\[ \Rightarrow T = \frac{{18}}{{10}} = 2\pi \sqrt {\frac{\ell }{g}} \Rightarrow \ell = \frac{{g{T^2}}}{{4{\pi ^2}}} = \frac{{9,81.1,{8^2}}}{{4{\pi ^2}}} = 0,8({\rm{m}})\]
Chiều dài của dãy phòng là: \[L = 81\ell = 81.0,8 = 64,8(m)\]Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là A
Phương pháp giải
Vận dụng công thức tính động năng trung bình: \[\overline {{W_{\rm{d}}}} = \frac{3}{2}kT\]
Vận dụng công thức tính áp suất khí: \[p = {n_0}kT\]
Lời giải
Động năng trung bình của các phân tử và mật độ phân tử khí
- Động năng trung bình:
\[\overline {{W_d}} = \frac{3}{2}kT = \frac{3}{2}.1,{38.10^{ - 23}}(27 + 273) = 6,{21.10^{ - 21}}J\]
- Mật độ phân tử: \[p = {n_0}kT \Rightarrow {n_0} = \frac{p}{{kT}}\]
\[ \Rightarrow {n_0} = \frac{{1,{{5.10}^5}}}{{1,{{38.10}^{ - 23}}.300}} = 3,{6.10^{25}}{{\rm{m}}^{ - 3}}\]
Vậy: Động năng trung bình của các phân tử khí là \[\overline {{W_d}} = 6,{21.10^{ - 21}}J\] và mật độ phân tử khí là \[{n_0} = 3,{6.10^{25}}{m^{ - 3}}\]
Lời giải
Đáp án đúng là A
Phương pháp giải
Công suất hoạt động của tấm pin: \[P = IS\]
Sử dụng biểu thức tính nhiệt lượng: \[Q = mc{\rm{\Delta }}t\]
Vận dụng biểu thức tính hiệu suất.
Lời giải
Công suất hoạt động của 2 tấm thu năng lượng: \[P = IS = 1000.2.2.1,25 = 5000{\rm{W}}\]
Nhiệt lượng máy thu được trong t = 2h = 7200s là:
\[Q = H.P.{\rm{\Delta }}t = 0,96.5000.7200 = {3456.10^4}J\]
Mặt khác, ta có: \[Q = mc{\rm{\Delta }}t\]
⇒ Độ tăng nhiệt độ của 150kg nước khi máy hoạt động:
\[{\rm{\Delta }}T = \frac{Q}{{mc}} = \frac{{{{3456.10}^4}}}{{150.4180}} \approx {55^o}C\]
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

