Câu hỏi:

12/01/2026 16 Lưu

Một loài cá ép sống bám trên các loài cá lớn nhưng không ảnh hưởng đến sinh trưởng, phát triển, sinh sản của loài cá lớn. Loài cá ép sau khi bám lên cá lớn thì tạo nên các khe hở để 5 loài vi sinh vật khác bám lên và sinh sống nhưng không gây bệnh cho các loài tham gia. Có bao nhiêu phát biểu sau đây đúng?

I. Quan hệ giữa các cá ép với các loài vi sinh vật là quan hệ kí sinh.

II. Mối quan hệ giữa tất cả các loài nói trên đều là quan hệ hỗ trợ khác loài.

III. Quan hệ giữa vi sinh vật với cá lớn là quan hệ hội sinh.

IV. Nếu loài cá ép tách khỏi cá lớn thì các loài vi sinh vật cũng sẽ tách ra khỏi cá lớn.

A. 3.           
B. 4.    
C. 2.       
D. 1.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Có 3 phát biểu đúng, đó là II, III và IV.

I. Sai. Các loài vi sinh vật không sống trên cơ thể và cũng không gây hại cho cá ép nên đây không phải mối quan hệ kí sinh.

Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tại \({t_0} = 70\) ta có: \(T\left( {70} \right) = 300\).

\(\mathop {\lim }\limits_{t \to {{70}^ - }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{70}^ - }} \left( {20 + 4t} \right) = 300\); \(\mathop {\lim }\limits_{t \to {{70}^ + }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{70}^ + }} \left( {a - 2t} \right) = a - 140\).

Hàm số liên tục trên tập xác định khi: \(\mathop {\lim }\limits_{t \to {{70}^ - }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{70}^ + }} T\left( t \right) = T\left( {70} \right)\)

\( \Leftrightarrow a - 140 = 300\)\( \Leftrightarrow a = 440\). Vậy giá trị của \(a = 440^\circ {\rm{C}}\). Chọn A.

Câu 2

A. \(\frac{{2750\pi }}{3}\) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).   
B. \(\frac{{2500\pi }}{3}\) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).      
C. \(\frac{{2050\pi }}{3}\)\(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).            
D. \(\frac{{2250\pi }}{3}\) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).

Lời giải

Chọn hệ trục tọa độ như hình vẽ bên.

Ta gọi thể tích của chiếc mũ là \(V\).

Thể tích của khối trụ có bán kính đáy bằng \(OA = 10\)cm và đường cao \(OO' = 5\)cm là \({V_1}\).

Thể tích của vật thể tròn xoay khi quay hình phẳng giới hạn bởi đường cong \(AB\) và hai trục tọa độ quanh trục \(Oy\) \({V_2}\). Khi đó, ta có \(V = {V_1} + {V_2}\).

Ta có \({V_1} = 5 \cdot {10^2}\pi = 500\pi \) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).

Do parabol có đỉnh \(A\) nên nó có phương trình dạng \(\left( P \right):y = a{\left( {x - 10} \right)^2}\). Vì \(\left( P \right)\) qua điểm \(B\left( {0;20} \right)\) nên \(a = \frac{1}{5}\). Do đó, \(\left( P \right):y = \frac{1}{5}{\left( {x - 10} \right)^2}\). Từ đó suy ra \(x = 10 - \sqrt {5y} \) (do \(x < 10\)).

Suy ra \({V_2} = \pi \int\limits_0^{20} {{{\left( {10 - \sqrt {5y} } \right)}^2}{\rm{dy}}} = \pi \left( {3000 - \frac{{8000}}{3}} \right) = \frac{{1000}}{3}\pi \) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).

Do đó \(V = {V_1} + {V_2} = \frac{{1000}}{3}\pi + 500\pi = \frac{{2500}}{3}\pi \) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\). Chọn B.

Chuẩn bị cho đêm hội diễn văn nghệ chào đón năm mới, bạn Minh Hiền đã làm một chiếc mũ “cách điệu” cho ông già Noel (ảnh 2)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP