Câu hỏi:

12/01/2026 22 Lưu

a. I suppose you could always tell the truth.

     b. What excuse will you give for not finishing your report?

     c. Oh, yeah, you’re right.

     d. I think I’ll say I got sick last night from bad seafood.

     e. Didn’t that happen to you last month?

     f. I can’t do that. I’ll fail for sure.

A. b-f-e-a-d-c.       
B. b-f-c-d-e-a.
C. b-d-e-c-a-f.
D. b-d-a-f-c-e.        

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Kiến thức về sắp xếp hội thoại

Chọn C.

Dịch:

b. Lý do cậu định biện minh cho việc không hoàn thành báo cáo là gì đây?

d. Tớ nghĩ là tớ sẽ nói do tối qua bị ốm vì ăn phải hải sản không tươi.

e. Không phải tháng trước cậu cũng lấy lí do đó rồi à?

c. Ờ, cậu nói đúng.

a. Tớ nghĩ cậu cứ nói sự thật là được mà.

f. Không được đâu, tớ sẽ bị trượt ngay.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tại \({t_0} = 70\) ta có: \(T\left( {70} \right) = 300\).

\(\mathop {\lim }\limits_{t \to {{70}^ - }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{70}^ - }} \left( {20 + 4t} \right) = 300\); \(\mathop {\lim }\limits_{t \to {{70}^ + }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{70}^ + }} \left( {a - 2t} \right) = a - 140\).

Hàm số liên tục trên tập xác định khi: \(\mathop {\lim }\limits_{t \to {{70}^ - }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{70}^ + }} T\left( t \right) = T\left( {70} \right)\)

\( \Leftrightarrow a - 140 = 300\)\( \Leftrightarrow a = 440\). Vậy giá trị của \(a = 440^\circ {\rm{C}}\). Chọn A.

Câu 2

A. \(\frac{{2750\pi }}{3}\) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).   
B. \(\frac{{2500\pi }}{3}\) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).      
C. \(\frac{{2050\pi }}{3}\)\(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).            
D. \(\frac{{2250\pi }}{3}\) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).

Lời giải

Chọn hệ trục tọa độ như hình vẽ bên.

Ta gọi thể tích của chiếc mũ là \(V\).

Thể tích của khối trụ có bán kính đáy bằng \(OA = 10\)cm và đường cao \(OO' = 5\)cm là \({V_1}\).

Thể tích của vật thể tròn xoay khi quay hình phẳng giới hạn bởi đường cong \(AB\) và hai trục tọa độ quanh trục \(Oy\) \({V_2}\). Khi đó, ta có \(V = {V_1} + {V_2}\).

Ta có \({V_1} = 5 \cdot {10^2}\pi = 500\pi \) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).

Do parabol có đỉnh \(A\) nên nó có phương trình dạng \(\left( P \right):y = a{\left( {x - 10} \right)^2}\). Vì \(\left( P \right)\) qua điểm \(B\left( {0;20} \right)\) nên \(a = \frac{1}{5}\). Do đó, \(\left( P \right):y = \frac{1}{5}{\left( {x - 10} \right)^2}\). Từ đó suy ra \(x = 10 - \sqrt {5y} \) (do \(x < 10\)).

Suy ra \({V_2} = \pi \int\limits_0^{20} {{{\left( {10 - \sqrt {5y} } \right)}^2}{\rm{dy}}} = \pi \left( {3000 - \frac{{8000}}{3}} \right) = \frac{{1000}}{3}\pi \) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).

Do đó \(V = {V_1} + {V_2} = \frac{{1000}}{3}\pi + 500\pi = \frac{{2500}}{3}\pi \) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\). Chọn B.

Chuẩn bị cho đêm hội diễn văn nghệ chào đón năm mới, bạn Minh Hiền đã làm một chiếc mũ “cách điệu” cho ông già Noel (ảnh 2)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP