Một hộp có 5 chiếc thẻ được đánh số từ 1 đến 5. Rút ngẫu nhiên đồng thời hai chiếc thẻ từ hộp. Tính xác suất của biến cố “Các số ghi trên hai thẻ đều là số lẻ”.
Quảng cáo
Trả lời:
Số phần tử của không gian mẫu là \(C_5^2 = 10\).
Gọi \(A\) là biến cố “Các số ghi trên hai thẻ đều là số lẻ”.
Các số lẻ trong hộp là \(\left\{ {1;3;5} \right\}\)\( \Rightarrow n\left( A \right) = C_3^2 = 3\). Do đó \(P\left( A \right) = \frac{3}{{10}}\). Chọn C.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
\(\overline A \) là biến cố “Thẻ được chọn mang số lẻ” \( \Rightarrow \overline A = \left\{ {1;3;5;7;9} \right\}\). Chọn C.
Lời giải
\(A\) là biến cố “Tổng số của 3 thẻ được chọn không vượt quá 8”.
Khi đó \(A = \left\{ {\left( {1;2;3} \right);\left( {1;2;4} \right);\left( {1;2;5} \right);\left( {1;3;4} \right)} \right\}\)\( \Rightarrow n\left( A \right) = 4\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\left\{ {\left( {1;1} \right);\left( {1;2} \right);\left( {2;1} \right);\left( {2;2} \right);\left( {3;1} \right);\left( {3;2} \right)} \right\}\).
B. \(\left\{ {\left( {1;1} \right);\left( {2;1} \right);\left( {3;1} \right)} \right\}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.