Câu hỏi:

21/01/2026 45 Lưu

Hình bên mô tả một đĩa tròn bằng bìa cứng được chia làm tám phần bằng nhau và ghi các số \[1;{\rm{ }}2;{\rm{ }}3;{\rm{ }}4;{\rm{ }}5;{\rm{ }}6;{\rm{ }}7;{\rm{ }}8.\] Chiếc kim được gắn cố định vào trục quay ở tâm của đĩa. Quay đĩa tròn một lần. Xác suất của biến cố: “Mũi tên chỉ vào hình quạt ghi số là ước của 12” là

Xác suất của biến cố: “Mũi tên chỉ vào hình quạt ghi số là ước của 12” là (ảnh 1)

A. \(\frac{3}{8}.\)   
B. \(\frac{5}{8}.\)    
C. \(\frac{3}{4}.\)    
D. \(\frac{1}{2}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Trong 8 số \[1;{\rm{ }}2;{\rm{ }}3;{\rm{ }}4;{\rm{ }}5;{\rm{ }}6;{\rm{ }}7;{\rm{ }}8,\] có 5 số là ước của \(12\) là: \[1;{\rm{ }}2;{\rm{ }}3;{\rm{ }}4;{\rm{ }}6.\]

Xác suất của biến cố: “Mũi tên chỉ vào hình quạt ghi số là ước của 12” là: \(\frac{5}{8}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Cho tam giác ABC có AB = 15cm,AC = 20cm,BC = 25cm,AD là đường phân giác của góc BAC. Tỉ số diện tích của S tam giác ABD/S tam giác ACD bằng (ảnh 1)

Xét \(\Delta ABC\) có \(AD\) là đường phân giác của \(\widehat {BAC}\) nên \(\frac{{DB}}{{DC}} = \frac{{AB}}{{AC}} = \frac{{15}}{{20}} = \frac{3}{4}.\)

Ta có: \({S_{\Delta ABD}} = \frac{1}{2}AH \cdot DB;\,\,{S_{\Delta ACD}} = \frac{1}{2}AH \cdot DC.\)

Do đó \[\frac{{{S_{\Delta ABD}}}}{{{S_{\Delta ACD}}}} = \frac{{\frac{1}{2}AH \cdot DB}}{{\frac{1}{2}AH \cdot DC}} = \frac{{DB}}{{DC}} = \frac{3}{4}.\]

Lời giải

Hướng dẫn giải

Cho tam giác ABC có đường phân giác AD. a) Giả sử AB = 6cm, BC = 10cm,AC = 9cm. Tính độ dài đoạn thẳng BD (ảnh 1)

a) Xét \(\Delta ABC\) có \(AD\) là tia phân giác của \(\widehat {BAC},\) nên \(\frac{{AB}}{{AC}} = \frac{{DB}}{{DC}}\) (tính chất đường phân giác), suy ra \(\frac{{AB}}{{DB}} = \frac{{AC}}{{DC}}.\)

Theo tính chất dãy tỉ số bằng nhau ta có

\(\frac{{AB}}{{DB}} = \frac{{AC}}{{DC}} = \frac{{AB + AC}}{{DB + DC}} = \frac{{AB + AC}}{{BC}} = \frac{{6 + 9}}{{10}} = \frac{{15}}{{10}} = \frac{3}{2}.\)

Suy ra \(DB = \frac{2}{3}AB = \frac{2}{3} \cdot 6 = 4{\rm{\;cm}},\,\,DC = \frac{2}{3}AC = \frac{2}{3} \cdot 9 = 6{\rm{\;cm}}.\)

b) Từ \(AE = \frac{1}{3}AB\) suy ra \(\frac{{AE}}{{AB}} = \frac{1}{3}.\)

Từ \(AC = 3AF\) suy ra \(\frac{{AF}}{{AC}} = \frac{1}{3}.\)

Do đó \(\frac{{AE}}{{AB}} = \frac{{AF}}{{AC}} = \frac{1}{3}.\)

Theo định lí Thalès đảo ta có \(EF\,{\rm{//}}\,BC.\)

c) i) Xét \(\Delta FBC\) có \(IA\,{\rm{//}}\,BC\) (do \(d\,{\rm{//}}\,BC)\) nên theo hệ quả định lí Thalès ta có: \(\frac{{FI}}{{FB}} = \frac{{AF}}{{FC}} = \frac{{IA}}{{BC}}.\,\,\,\left( 1 \right)\)

Xét \(\Delta EBC\) có \(AK\,{\rm{//}}\,BC\) (do \(d\,{\rm{//}}\,BC)\) nên theo hệ quả định lí Thalès ta có: \(\frac{{EA}}{{EB}} = \frac{{AK}}{{BC}}.\,\,\,\left( 2 \right)\)

Xét \(\Delta ABC\) có \(EF\,{\rm{//}}\,BC\) (câu b) theo hệ quả định lí Thalès ta có: \(\frac{{AE}}{{AB}} = \frac{{AF}}{{AC}} = \frac{{EF}}{{BC}},\) suy ra \(\frac{{AE}}{{AE + AB}} = \frac{{AF}}{{AF + AC}},\) hay \(\frac{{AE}}{{EB}} = \frac{{AF}}{{FC}}.\,\,\,\left( 3 \right)\)

Từ (1), (2) và (3) suy ra \(\frac{{IA}}{{BC}} = \frac{{AK}}{{BC}},\) do đó \(AI = AK,\) hay \(A\) là trung điểm của \(IK.\)

ii) Xét \(\Delta EBC\) có \(AK\,{\rm{//}}\,BC\) (do \(d\,{\rm{//}}\,BC)\) nên theo hệ quả định lí Thalès ta có: \(\frac{{CK}}{{CE}} = \frac{{CA}}{{CF}}.\,\,\,\left( 4 \right)\)

Từ (1) và (4) ta có \(\frac{{FI}}{{FB}} + \frac{{CK}}{{CE}} = \frac{{AF}}{{FC}} + \frac{{CA}}{{CF}} = \frac{{FC}}{{FC}} = 1.\)

Vậy \(\frac{{FI}}{{FB}} + \frac{{CK}}{{CE}} = 1.\)

Câu 3

A. \(\frac{{MD}}{{AD}} = \frac{{CP}}{{BC}}.\)  
B. \(\frac{{MD}}{{AD}} = \frac{{BQ}}{{BC}}.\) 
C. \(\frac{{MD}}{{AD}} = \frac{{CN}}{{BC}}.\)  
D. \(\frac{{MD}}{{AD}} = \frac{{CQ}}{{BQ}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP