Câu hỏi:

23/01/2026 3 Lưu

Cho vật thể có mặt đáy là hình tròn có bán kính bằng 1. Khi cắt vật thể bởi mặt phẳng vuông góc với trục \[Ox\] tại điểm có hoành độ \(x\,\,\left( { - 1 \le x \le 1} \right)\) thì được thiết diện là một tam giác đều. Thể tích \(V\) của vật thể đó là:

Cho vật thể có mặt đáy là hình tròn có bán kính bằng 1. Khi cắt vật thể bởi mặt phẳng vuông góc với trục (ảnh 1)

A. \(V = \sqrt 3 .\)  
B. \(V = 3\sqrt 3 .\)           
C. \(V = \frac{{4\sqrt 3 }}{3}.\) 
D. \(V = \pi .\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ở mặt đáy, tam giác \[OHB\] vuông tại \(H\) nên

\(HB = \sqrt {O{B^2} - O{H^2}} = \sqrt {1 - {x^2}} \)\( \Rightarrow AB = 2\sqrt {1 - {x^2}} \).

Diện tích của mặt cắt khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ \(x\,\,\left( { - 1 \le x \le 1} \right)\) là:

\(S\left( x \right) = \frac{{A{B^2}\sqrt 3 }}{4} = \frac{{{{\left( {2\sqrt {1 - {x^2}} } \right)}^2} \cdot \sqrt 3 }}{4} = \sqrt 3 \left( {1 - {x^2}} \right)\).

Thể tích \(V\) của vật thể đó là:

                \[V = \int\limits_{ - 1}^1 {S\left( x \right)} \,{\rm{d}}x = \int\limits_{ - 1}^1 {\sqrt 3 \left( {1 - {x^2}} \right)} \,{\rm{d}}x\]

                    \[ = \left. {\sqrt 3 \left( {x - \frac{1}{3}{x^3}} \right)} \right|_{ - 1}^1 = \sqrt 3 \cdot \frac{4}{3} = \frac{{4\sqrt 3 }}{3}\].

Chọn C.
Cho vật thể có mặt đáy là hình tròn có bán kính bằng 1. Khi cắt vật thể bởi mặt phẳng vuông góc với trục (ảnh 2)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

     A. Không nên đọc nhiều sách.
     B. Nên lựa chọn sách để đọc.
     C. Đọc sách cần đọc kĩ.                                    
     D. Đọc sách ít tốt hơn là đọc sách nhiều.

Lời giải

Câu “Nếu đọc mười quyển sách không quan trọng, không bằng thời gian đem sức lực đọc mười quyển ấy mà đọc một quyển thực sự có giá trị”. Trong câu này, “mười quyển sách không quan trọng” có nghĩa là mười quyển sách không có giá trị. Cả câu nói có nghĩa là: nên lựa chọn sách có giá trị mà đọc, đọc ít nhưng giá trị còn hơn đọc nhiều mà không đem lại giá trị gì. Chọn B.

Câu 2

A. Lợi ích của các loại vật chất.  
B. Các nguyên tố cấu thành vật chất. 
C. Tính hai mặt của các nguyên tố.      
D. Tác hại của các loại vật chất.

Lời giải

Dựa vào đoạn mở đầu: “Các loại vật chất tồn tại ở khắp nơi trên Trái Đất của chúng ta. Vậy, những nguyên tố cơ bản nào cấu thành vật chất?” có thể xác định được nội dung chính của bài đọc nói về các nguyên tố cấu thành vật chất trên Trái Đất. Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(2\,\;{\rm{m}}/{{\rm{s}}^2}.\)    
B. \(8\;\,{\rm{m}}/{{\rm{s}}^2}.\) 
C. \(5\;\,{\rm{m}}/{{\rm{s}}^2}.\)         
D. \(6\;\,{\rm{m}}/{{\rm{s}}^2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 4.                     
 B. 5.          
 C. 6.                        
D. 7.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP