Câu hỏi:

23/01/2026 5 Lưu

Cho \[\widehat {xOy} = 120^\circ \], điểm \[A\] thuộc tia phân giác của \[\widehat {xOy}.\] Kẻ \[AB \bot Ox\,\,\left( {B \in Ox} \right)\]\[AC \bot Oy\,\,\left( {C \in Oy} \right)\].

Cho góc {xOy} = 120 độ, điểm \[A\] thuộc tia phân giác của (ảnh 1)
Khi đó:

a) \[\Delta ABO = \Delta CAO\].

Đúng
Sai

b) \[AB = AC.\]

Đúng
Sai

c) \[\widehat {BAC} = 60^\circ \].

Đúng
Sai
d) \[\Delta ABC\] đều.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai.

Xét hai tam giác vuông \[\Delta ABO\]\[\Delta CAO\] có:

\[\widehat {COA} = \widehat {AOB}\] (gt)

\[OA\] chung (gt)

Do đó, \[\Delta ABO = \Delta ACO\] (cạnh huyền – góc nhọn)

b) Đúng.

\[\Delta ABO = \Delta ACO\] (cmt) nên \[AB = AC\] (hai cạnh tương ứng).

c) Đúng.

\[\widehat {xOy} = 120^\circ \]\[\widehat {COA} = \widehat {AOB}\] (gt) nên \[\widehat {COA} = \widehat {AOB} = \frac{{120^\circ }}{2} = 60^\circ \].

Xét \[\Delta CAO\], có: \[\widehat {CAO} = 90^\circ - \widehat {COA} = 90 - 60^\circ = 30^\circ \].

Mà ta có: \[\widehat {CAO} = \widehat {OAB}\] (hai góc tương ứng)

Do đó, \[\widehat {BAC} = \widehat {CAO} + \widehat {OAB} = 30^\circ + 30^\circ = 60^\circ \].

d) Đúng.

Xét \[\Delta ABC\]\[AB = AC\] (cmt) nên \[\Delta ABC\] cân tại \[A.\]

\[\widehat {BAC} = 60^\circ \] nên \[\Delta ABC\] đều.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) \[\Delta ADC\] cân tại \[D\].

Đúng
Sai

b) \[\Delta ADB\] cân tại \[B.\]

Đúng
Sai

c) \[DA = DB\].

Đúng
Sai
d) \[D\] là trung điểm của \[BC.\]
Đúng
Sai

Lời giải

a) Đúng.

Vì đường trung trực của đoạn thẳng \[AC\] cắt \[AC\] tại \[H,\] cắt \[BC\] tại \[D\] nên ta có \[DC = DA\] (tính chất đường trung trực).

Suy ra \[\Delta ADC\] cân tại \[D\].

b) Sai.

\[\Delta ADC\] cân tại \[D\] nên \[\widehat C = \widehat {{A_1}}\].

Ta có: \[\widehat {ABD} = 90^\circ - \widehat C\]\[\widehat {{A_2}} = 90^\circ - \widehat {{A_1}}\].

Suy ra \[\widehat {ABD} = \widehat {{A_2}}\].

Vậy \[\Delta ADB\] cân tại \[D\].

c) Đúng.

\[\Delta ADB\] cân tại \[D\]nên \[AD = BD\].

d) Đúng.

\[AD = BD\] (cmt) và \[DC = DA\] (\[\Delta ADC\]cân tại \[D\]) nên \[DC = DB\].

Vậy \[D\] là trung điểm của \[BC.\]

Lời giải

Xét \[\Delta ABC\]\[CB = AB\] nên \[\Delta ABC\] cân tại \[B\].

Do đó, \[\widehat {BAC} = \widehat {BCA} = \frac{{180^\circ - CBA}}{2} = \frac{{180^\circ - 50^\circ }}{2} = 65^\circ \].

Xét \[\Delta CBD\]\[CD = BD\] nên \[\Delta CBD\] cân tại \[D\].

Suy ra \[\widehat {CBD} = \widehat {BCD} = 65^\circ \].

Do đó, \[\widehat {ABD} = \widehat {BCD} - \widehat {CBA} = 65^\circ - 50^\circ = 15^\circ \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(AB = AC.\)          
B. \(AB = BC.\)           
C. \(\widehat B = \widehat {C.}\)         
D. \(\widehat B = \frac{{180^\circ - \widehat A}}{2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(AB = BC.\)                      
B. \(AB = AC.\)          
C. \(\widehat A = \widehat B.\)     
D. \(\widehat C = \widehat A.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\Delta ABC\) là tam giác đều.                   

B. \(\Delta ABC\) cân tại \(A.\)        

C. \(\Delta ABC\) cân tại \(B.\)                     
D. \(\Delta ABC\) cân tại \(C.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP