Câu hỏi:

23/01/2026 39 Lưu

Cho \(\Delta ABC\)\(\widehat A = 40^\circ ,\widehat B - \widehat C = 20^\circ \) trên tia đối của \(AC\) lấy điểm \(E\) sao cho \(AE = AB\). Hỏi số đo của \(\widehat {CBE}\) bằng bao nhiêu độ?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

100
Cho \(\Delta ABC\) có  góc A = 40 độ ,góc B - góc C = 20 độ trên tia đối của \(AC\) lấy điểm \(E\) (ảnh 1)

Xét \(\Delta ABC\) có \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong một tam giác) nên \(\widehat B + \widehat C = 140^\circ \).

Lại thấy \(\widehat B - \widehat C = 20^\circ \), do đó \(B = \frac{{140^\circ  + 20^\circ }}{2} = 80^\circ \) và \(\widehat C = 60^\circ \).

Xét \(\Delta AEB\) cân tại \(A\) (do \(AE = AB\)) nên \(\widehat {AEB} = \widehat {ABE}\) (tính chất của tam giác cân) (1)

Lại có \(\widehat {BAC}\) là góc ngoài tam giác \(AEB\) nên \(\widehat {BAC} = \widehat {AEB} + \widehat {ABE}\) (2)

Từ (1) và (2) suy ra \(\widehat {ABE} = \frac{{\widehat {BAC}}}{2} = 20^\circ \).

Do đó, \(\widehat {CBE} = \widehat {CBA} + \widehat {ABE} = 80^\circ  + 20 = 100^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) \[\Delta ADC\] cân tại \[D\].

Đúng
Sai

b) \[\Delta ADB\] cân tại \[B.\]

Đúng
Sai

c) \[DA = DB\].

Đúng
Sai
d) \[D\] là trung điểm của \[BC.\]
Đúng
Sai

Lời giải

a) Đúng.

Vì đường trung trực của đoạn thẳng \[AC\] cắt \[AC\] tại \[H,\] cắt \[BC\] tại \[D\] nên ta có \[DC = DA\] (tính chất đường trung trực).

Suy ra \[\Delta ADC\] cân tại \[D\].

b) Sai.

\[\Delta ADC\] cân tại \[D\] nên \[\widehat C = \widehat {{A_1}}\].

Ta có: \[\widehat {ABD} = 90^\circ - \widehat C\]\[\widehat {{A_2}} = 90^\circ - \widehat {{A_1}}\].

Suy ra \[\widehat {ABD} = \widehat {{A_2}}\].

Vậy \[\Delta ADB\] cân tại \[D\].

c) Đúng.

\[\Delta ADB\] cân tại \[D\]nên \[AD = BD\].

d) Đúng.

\[AD = BD\] (cmt) và \[DC = DA\] (\[\Delta ADC\]cân tại \[D\]) nên \[DC = DB\].

Vậy \[D\] là trung điểm của \[BC.\]

Câu 2

A. \[50^\circ .\]            
B. \[56^\circ .\]            
C. \[72^\circ .\]            
D. \[65^\circ .\]

Lời giải

Đáp án đúng là: C

Giả sử tam giác \[\Delta ABC\] cân tại \[A\] có số đo góc ở đáy gấp hai lần số đo góc ở đỉnh tức là:

\[\widehat B = \widehat C = 2\widehat A\].

Xét \[\Delta ABC\], ta có: \[\widehat A + \widehat B + \widehat C = 180^\circ \] hay \[\widehat A + 2\widehat A + 2\widehat A = 180^\circ \].

Do đó, \[5\widehat A = 180^\circ \], suy ra \[\widehat A = 180^\circ :5 = 36^\circ \].

Suy ra, số đo góc ở đáy của tam giác cân đó là: \[36^\circ \cdot 2 = 72^\circ \].

Câu 3

a) \[\widehat {ABC} = \widehat {ACB}.\]

Đúng
Sai

b) \[\widehat {{B_2}} = \widehat {{C_2}}\].

Đúng
Sai

c) \[\Delta ABD = \Delta AEC\].

Đúng
Sai
d) \[\Delta ADE\] cân tại \[D\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \[\Delta ABO = \Delta CAO\].

Đúng
Sai

b) \[AB = AC.\]

Đúng
Sai

c) \[\widehat {BAC} = 60^\circ \].

Đúng
Sai
d) \[\Delta ABC\] đều.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) \[\Delta ABD = \Delta AEC\].

Đúng
Sai

b) \[\Delta ADE\] cân.

Đúng
Sai

c) \[DE\parallel BC.\]

Đúng
Sai
d) \[\Delta IBC\] cân tại \[I.\]
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP