Câu hỏi:

23/01/2026 73 Lưu

Phần II (2 điểm). Thí sinh trả lời câu 1, câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số y=x33x2+2

a) Đạo hàm của hàm số đã cho là \[y' = 3{x^2} - 6x\].
Đúng
Sai
b) Hàm số đã cho đồng biến trên khoảng \[\left( {0\,;2} \right)\] và nghịch biến trên các khoảng \[\left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\].
Đúng
Sai
c) Bảng biến thiên của hàm số đã cho là:
Phần II (2 điểm). Thí sinh trả lời câu 1, câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai. (ảnh 3)
Đúng
Sai

d) Đồ thị hàm số đã cho như ở hình dưới.

Phần II (2 điểm). Thí sinh trả lời câu 1, câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai. (ảnh 4)

Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Ta có \(y' = 3{x^2} - 6x\).

b) Sai. Ta có \(y' = 0 \Leftrightarrow x = 0\) hoặc \(x = 2\).

Trên các khoảng \(\left( { - \infty ;0} \right)\)\(\left( {2; + \infty } \right)\) thì \(y' > 0\) với mọi \(x \in \mathbb{R}\) nên hàm số đã cho đồng biến trên các khoảng này.

Trên khoảng \(\left( {0;2} \right)\) thì \(y' < 0\) với mọi \(x \in \mathbb{R}\) nên hàm số nghịch biến trên khoảng này.

c) Sai. Bảng biến thiên của hàm số đã cho là:

Phần II (2 điểm). Thí sinh trả lời câu 1, câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai. (ảnh 1)

d) Đúng. Đồ thị hàm số đã cho là:

Phần II (2 điểm). Thí sinh trả lời câu 1, câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai. (ảnh 2)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Hàm số đã cho đồng biến trên \(\left( { - 1; + \infty } \right)\).                  
B. Hàm số đã cho đồng biến trên \(\left( { - \infty ;2} \right)\).    
C. Hàm số đã cho nghịch biến trên \(\left( { - 2;1} \right)\).                     
D. Hàm số đã cho nghịch biến trên \[\left( { - 1;2} \right)\].

Lời giải

Ta có \(f'\left( x \right) = \left( {x - 2} \right)\left( {x + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 1\end{array} \right..\)

Bảng xét dấu của \(f'\left( x \right)\) như sau:

Cho hàm số \(y = f\left( x \right)\) có đạo (ảnh 1)

Vậy hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right),\left( {2; + \infty } \right)\) và nghịch biến trên khoảng \[\left( { - 1;2} \right)\].

Chọn D.

Lời giải

Ta có \[{4^{{x^2} - 3x + 2}} + {4^{2{x^2} + 6x + 5}} = {4^{3{x^2} + 3x + 7}} + 1\]

\[ \Leftrightarrow {4^{{x^2} - 3x + 2}} + {4^{2{x^2} + 6x + 5}} = {4^{{x^2} - 3x + 2}} \cdot {4^{2{x^2} + 6x + 5}} + 1\]

\[ \Leftrightarrow {4^{{x^2} - 3x + 2}} - 1 + {4^{2{x^2} + 6x + 5}} - {4^{{x^2} - 3x + 2}} \cdot {4^{2{x^2} + 6x + 5}} = 0\]

\( \Leftrightarrow \left( {{4^{{x^2} - 3x + 2}} - 1} \right)\left( {1 - {4^{2{x^2} + 6x + 5}}} \right) = 0\).

Trường hợp 1: \({4^{{x^2} - 3x + 2}} = 1 \Leftrightarrow {x^2} - 3x + 2 = 0 \Leftrightarrow x = 1\) hoặc \(x = 2\).

Trường hợp 2: \({4^{2{x^2} + 6x + 5}} = 1 \Leftrightarrow 2{x^2} + 6x + 5 = 0\), phương trình này vô nghiệm.

Vậy, phương trình cho có \(2\) nghiệm \(x = 1,\) \(x = 2\).

Câu 3

A. \(20\).                 
B. \(10\).                 
C. \(\frac{5}{2}\).           
D. \(\frac{5}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{108}}{{775}}\).                    
B. \(\frac{{108}}{{665}}\).                             
C. \(\frac{{116}}{{565}}\).                             
D. \(\frac{{109}}{{785}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP