Câu hỏi:

29/01/2026 9 Lưu

Gieo đồng thời một con xúc xắc và một đồng xu. Tính xác suất của các biến cố sau:

a) E: “Số chấm xuất hiện trên con xúc xắc là số lẻ”;

b) F: “Số chấm xuất hiện trên con xúc xắc là số chẵn và đồng xu xuất hiện mặt ngửa”.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Không gian mẫu \(\Omega = \left\{ {1\;S;1\;N;2\;S;2\;N;3\;S;3\;N;4\;S;4\;N;5\;S;5\;N;6\;S;6\;N} \right\}\); \(n\left( \Omega \right) = 12\).

a) Có 6 kết quả thuận lợi cho biến cố \(E\)\(1\;S,1\;N,3\;S,3\;N,5\;S,5\;N\). Vậy \(P\left( E \right) = \frac{6}{{12}} = \frac{1}{2}\).

b) Có 3 kết quả thuận lợi cho biến cố \(F\)\(2\;N,4\;N,6\;N\). Vậy \(P\left( F \right) = \frac{3}{{12}} = \frac{1}{4}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng sau:

                   Sơn

Hòa

\(SS\)

\(SN\)

\(NS\)

\(NN\)

1

\(1SS\)

\(1SN\)

\(1NS\)

\(1NN\)

2

\(2SS\)

\(2SN\)

\(2NS\)

\(2NN\)

3

\(3SS\)

\(3SN\)

\(3NS\)

\(3NN\)

4

\(4SS\)

\(4SN\)

\(4NS\)

\(4NN\)

5

\(5SS\)

\(5SN\)

\(5NS\)

\(5NN\)

6

\(6SS\)

\(6SN\)

\(6NS\)

\(6NN\)

Mỗi ô trong bảng là một kết quả có thể. Có 24 kết quả có thể là đồng khả năng.

a) Có 1 kết quả thuận lợi cho biến cố \(A\) là \(6NN\). Vậy \(P\left( A \right) = \frac{1}{{24}}\).

b) Có 4 kết quả thuận lợi cho biến cố \(B\) là \(1SN,1NS,2SN,2NS\). Vậy \(P\left( B \right) = \frac{4}{{24}} = \frac{1}{6}\).

Lời giải

a) Số học sinh của lớp 9 A là \((4:10).100 = 40\) (học sinh). Số kết quả có thể xảy ra là \(n(\Omega ) = 40\).

b) Số học sinh đạt trên 8 điểm là \((40:100) \cdot (30 + 10) = 16\) (học sinh).

Số kết quả thuận lợi cho biến cố A là \({\rm{n}}({\rm{A}}) = 16\).

Xác suất của biến cố A là \({\rm{P}}({\rm{A}}) = \frac{{16}}{{40}} = 0,4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP