Các phép quay có thể có với một đa giác đều tâm \[O\] là
Quảng cáo
Trả lời:
Chọn B
Các phép quay có thể có với một đa giác đều tâm \[O\] là phép quay thuận chiều tâm \[O\] và phép quay ngược chiều tâm \[O\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
![Phép quay thuận chiều tâm \[O\] biến điể (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/6-1769710536.png)
Câu 2
Lời giải
Chọn A

Giả sử \[ABCDEGHK\] là bát giác đều có tâm \[O.\]
Do đó \[AB = BC = CD = DE = EG = GH = HK\] và \[OA = OB = OC = OD = OE = OG = OH = OK.\]
Xét \[\Delta OAB\] và \[\Delta OBC\] có: \[OA = OB,{\rm{ }}OB = OC,{\rm{ }}AB = BC\].
Do đó \[\Delta OAB = \Delta OBC\,\,\left( {{\rm{c}}{\rm{.c}}{\rm{.c}}} \right)\].
Tương tự, ta sẽ chứng minh được:
\[\Delta OAB = \Delta OBC = \Delta COD = \Delta DOE = \Delta EOG = \Delta GOH = \Delta HOK = \Delta KOA.\]
Suy ra các góc tương ứng bằng nhau:
\(\widehat {AOB} = \widehat {BOC} = \widehat {COD} = \widehat {DOE} = \widehat {EOG} = \widehat {GOH} = \widehat {HOK} = \widehat {KOA}.\)
Ta có: \(\widehat {AOB} + \widehat {BOC} + \widehat {COD} + \widehat {DOE} + \widehat {EOG} + \widehat {GOH} + \widehat {HOK} + \widehat {KOA} = 360^\circ \)
Suy ra \(8\widehat {AOB} = 360^\circ ,\) nên \(\widehat {AOB} = 45^\circ .\)
Do đó, \(\widehat {DOE} = \widehat {EOG} = \widehat {GOH} = 45^\circ .\)
Như vậy, ta sẽ có \[\widehat {DOG} = \widehat {DOE} + \widehat {EOF} + \widehat {FOG} = 45^\circ + 45^\circ + 45^\circ = 135^\circ .\]
Vậy quay thuận chiều \[135^\circ \] tâm \[O\] biến điểm \[D\] của bát giác đều \[ABCDEFGH\] thành điểm \[G.\]
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.