Câu hỏi:

30/01/2026 9 Lưu

Cho hình ngũ giác đều \[ABCDE\] tâm \[O\]. Phép quay thuận chiều tâm \[O\] biến điểm \[A\] thành điểm \[E\] thì điểm \[C\] biến thành điểm

A. \[A\].                    
B. \[B\].                   
C. \[D\].                          
D. \[E\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Phép quay thuận chiều tâm \[O\] biến điể (ảnh 1)

Phép quay thuận chiều tâm \[O\] biến điểm \[A\] thành điểm \[E\] thì các điểm \[B,{\rm{ }}C,{\rm{ }}D,{\rm{ }}E\] tương ứng biến thành các điểm \[A,{\rm{ }}B,{\rm{ }}C,{\rm{ }}D\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[G.\]                     
B. \[A.\]                   
C. \[E.\]                         
D. \[H.\]

Lời giải

Chọn A

Chọn D  Theo công thức tính góc củ (ảnh 1)

Giả sử \[ABCDEGHK\] là bát giác đều có tâm \[O.\]

Do đó \[AB = BC = CD = DE = EG = GH = HK\] và \[OA = OB = OC = OD = OE = OG = OH = OK.\]

Xét \[\Delta OAB\] và \[\Delta OBC\] có: \[OA = OB,{\rm{ }}OB = OC,{\rm{ }}AB = BC\].

Do đó \[\Delta OAB = \Delta OBC\,\,\left( {{\rm{c}}{\rm{.c}}{\rm{.c}}} \right)\].

Tương tự, ta sẽ chứng minh được:

\[\Delta OAB = \Delta OBC = \Delta COD = \Delta DOE = \Delta EOG = \Delta GOH = \Delta HOK = \Delta KOA.\]

Suy ra các góc tương ứng bằng nhau:

\(\widehat {AOB} = \widehat {BOC} = \widehat {COD} = \widehat {DOE} = \widehat {EOG} = \widehat {GOH} = \widehat {HOK} = \widehat {KOA}.\)

Ta có: \(\widehat {AOB} + \widehat {BOC} + \widehat {COD} + \widehat {DOE} + \widehat {EOG} + \widehat {GOH} + \widehat {HOK} + \widehat {KOA} = 360^\circ \)

Suy ra \(8\widehat {AOB} = 360^\circ ,\) nên \(\widehat {AOB} = 45^\circ .\)

Do đó, \(\widehat {DOE} = \widehat {EOG} = \widehat {GOH} = 45^\circ .\)

Như vậy, ta sẽ có \[\widehat {DOG} = \widehat {DOE} + \widehat {EOF} + \widehat {FOG} = 45^\circ  + 45^\circ  + 45^\circ  = 135^\circ .\]

Vậy quay thuận chiều \[135^\circ \] tâm \[O\] biến điểm \[D\] của bát giác đều \[ABCDEFGH\] thành điểm \[G.\]

Câu 2

A. \(120^\circ \).        
B. \(150^\circ \).      
C. \(90^\circ \).                               
D. \(135^\circ \).

Lời giải

Chọn D

Mỗi góc của bát giác đều nội tiếp đường tròn tâm \[O\] có số đo là  (ảnh 1)

Số đo mỗi góc của một bát giác đều là: \(\frac{{180^\circ .\left( {8 - 2} \right)}}{8} = 135^\circ \).

Vậy số đo mỗi góc của một bát giác đều là \(135^\circ \).

Câu 3

A. 45 cm.                   
B. 50 cm.                 
C. 60 cm.                             
D. 55 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 1.                           
B. 2.                         
C. 3.                               
D. 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 1.                           
B. 2.                         
C. 3.                               
D. 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[AB\].                  
B. \[BC\].                
C. \[CD\].                      
D. \[DA\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP