Câu hỏi:

01/02/2026 5 Lưu

Tấm bìa cứng A hình tròn được chia thành 3 hình quạt có diện tích bằng nhau, đánh số \(1;2;3\) và tấm bìa cứng B hình tròn được chia thành 5 hình quạt có diện tích bằng nhau, đánh số \(1;2;3;4;5\). Trục quay của A và B được gắn mũi tên ở tâm. Bạn Nam quay tấm bìa A, bạn Bình quay tấm bìa B. Quan sát xem mũi tên dừng ở hình quạt nào trên hai tấm bìa. (Xem hình vẽ).

Tấm bìa cứng A hình tròn được chia thành 3 hình quạt có diện tích bằng nhau, đánh số \(1;2;3\) và tấm bìa cứng B hình tròn được chia thành 5 hình quạt có diện tích bằng nhau, đánh số \(1;2;3;4;5\). (ảnh 1)

Tính xác suất của các biến cố sau:

\(E\): “Tích hai số ở hình quạt mà hai mũi tên chỉ vào bằng 6”;

\(F\): “Tích hai số ở hình quạt mà hai mũi tên chỉ vào nhỏ hơn 5”;

\(G\): “Tích hai số ở hình quạt mà hai mũi tên chỉ vào là số chẵn”.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn: Viết tập hợp \(\Omega \) và các tập hợp \[E,{\rm{ }}F,{\rm{ }}G\].

Lời giải

Ta có bảng sau:

                           A

B

1

2

3

1

\(\left( {1;1} \right)\)

\(\left( {1;2} \right)\)

\(\left( {1;3} \right)\)

2

\(\left( {2;1} \right)\)

\(\left( {2;2} \right)\)

\(\left( {2;3} \right)\)

3

\(\left( {3;1} \right)\)

\(\left( {3;2} \right)\)

\(\left( {3;3} \right)\)

4

\(\left( {4;1} \right)\)

\(\left( {4;2} \right)\)

\(\left( {4;3} \right)\)

5

\(\left( {5;1} \right)\)

\(\left( {5;2} \right)\)

\(\left( {5;3} \right)\)

\(\Omega = \left\{ {\left( {1;1} \right);\left( {1;2} \right);\left( {1;3} \right);\left( {2;1} \right);\left( {2;2} \right);\left( {2;3} \right);\left( {3;1} \right);\left( {{\rm{3}};2} \right);\left( {3;3} \right);\left( {4;1} \right);\left( {4;2} \right);\left( {4;3} \right);\left( {5;1} \right);\left( {5;2} \right);\left( {5;3} \right)} \right\}\)

Số phần tử của \(\Omega \)\(15;n\left( \Omega \right) = 15\)

Số kết quả thuận lợi cho biến cố \(E\) là:\(E = \left\{ {\left( {3;2} \right);\left( {2;3} \right)} \right\} \Rightarrow P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{2}{{15}}\)

Ta có: \(F = \left\{ {\left\{ {(1;1);(1;2);(2;1);(1;3);(3;1);(2;2);(4;1)} \right\}} \right\}\)\( \Rightarrow P\left( {\;F} \right) = \frac{7}{{15}}\)

Ta có: \({\rm{G}} = \left\{ {(1;2);(2;1);(2;2);(2;3);(3;2);(4;1);(4;2);(4;3);(5;2)} \right\}\).

Tập hợp \(G\) có 9 phần tử. Vậy \(P\left( G \right) = \frac{9}{{15}} = \frac{3}{5}{\rm{. }}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có bảng sau:

            Dạng hạt

 

Màu hạt

\(BB\)

\(Bb\)

\(bB\)

\(bb\)

\(AA\)

\(\left( {AA;BB} \right)\)

\(\left( {AA;Bb} \right)\)

\(\left( {AA;bB} \right)\)

\(\left( {AA;bb} \right)\)

\(Aa\)

\[\left( {Aa;BB} \right)\]

\(\left( {Aa;Bb} \right)\)

\(\left( {Aa;bB} \right)\)

\(\left( {Aa;bb} \right)\)

Gọi \(E\) là biến cố “cây con có hạt vàng nhăn”. Ta có: \[E = \left\{ {\left( {AA,bb} \right);\left( {Aa;bb} \right)} \right\}\].

Có hai kết quả thuận lợi cho biến cố \(E\).

\(\Omega = \left\{ {\left( {AA,BB} \right);\left( {AA,Bb} \right);\left( {AA;bB} \right);\left( {AA,bb} \right);\left( {Aa,BB} \right);\left( {Aa,Bb} \right);\left( {Aa;bB} \right);\left( {Aa,bb} \right)} \right\}\)

Vậy\({\rm{ }}P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{2}{8} = \frac{1}{4}.\)

Lời giải

Ta có:\(\Omega = \{ 22;24;29;42;44;49;92;94;99\} \). Số phần tử của \(\Omega \) là 9.

a) Ta có: \(A = \left\{ {24;44;92} \right\}\). Tập hợp \(A\) có 3 phần tử. Vậy \(P\left( A \right) = \frac{3}{9} = \frac{1}{3}\).

b) Ta có: \(B = \left\{ {29} \right\}\). Tập hợp \(B\) có 1 phần tử. Vậy\(P\;\left( B \right) = \frac{1}{9}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP