Xét ba bạn An, Bình, Châu ngồi trên một dãy ghế có ba chỗ ngồi. Tính xác suất các biến cố sau:
a) \(E\): “An không ngồi ngoài cùng bên phải”;
b) \(B\): “Bình và Châu ngồi cạnh nhau”.
Xét ba bạn An, Bình, Châu ngồi trên một dãy ghế có ba chỗ ngồi. Tính xác suất các biến cố sau:
a) \(E\): “An không ngồi ngoài cùng bên phải”;
b) \(B\): “Bình và Châu ngồi cạnh nhau”.
Câu hỏi trong đề: 13 bài tập Xác suất của biến cố (có lời giải) !!
Quảng cáo
Trả lời:
Hướng dẫn: Viết tập hợp các phần tử của không gian mẫu bằng cách liệt kê các kết quả.
Lời giải
Kí hiệu ba bạn An, Bình, Châu là \(A,B,C\). Có các cách xếp ba bạn vào dãy ghế:
\[\left( {A,B,C} \right);\left( {A,C,B} \right);\left( {B,A,C} \right);\left( {B,C,A} \right);\left( {C,A,B} \right);\left( {C,B,A} \right)\].
Vậy \[\Omega = \left\{ {\left( {A,B,C} \right);\left( {A,C,B} \right);\left( {B,A,C} \right);\left( {B,C,A} \right);\left( {C,A,B} \right);\left( {C,B,A} \right)} \right\}\]. Số phần tử của \(\Omega \) là 6.
a) Ta có: \(E = \left\{ {\left( {B,A,C} \right);\left( {B,C,A} \right);\left( {C,A,B} \right);\left( {C,B,A} \right)} \right\}\). Vậy \(P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{4}{6} = \frac{2}{3}\).
b) Ta có: \[F = \left\{ {\left( {B,A,C} \right);\left( {C,A,B} \right)} \right\}\]. Vậy \(P\left( F \right) = \frac{2}{6} = \frac{1}{3}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có bảng sau:
|
Dạng hạt
Màu hạt |
\(BB\) |
\(Bb\) |
\(bB\) |
\(bb\) |
|
\(AA\) |
\(\left( {AA;BB} \right)\) |
\(\left( {AA;Bb} \right)\) |
\(\left( {AA;bB} \right)\) |
\(\left( {AA;bb} \right)\) |
|
\(Aa\) |
\[\left( {Aa;BB} \right)\] |
\(\left( {Aa;Bb} \right)\) |
\(\left( {Aa;bB} \right)\) |
\(\left( {Aa;bb} \right)\) |
Gọi \(E\) là biến cố “cây con có hạt vàng nhăn”. Ta có: \[E = \left\{ {\left( {AA,bb} \right);\left( {Aa;bb} \right)} \right\}\].
Có hai kết quả thuận lợi cho biến cố \(E\).
\(\Omega = \left\{ {\left( {AA,BB} \right);\left( {AA,Bb} \right);\left( {AA;bB} \right);\left( {AA,bb} \right);\left( {Aa,BB} \right);\left( {Aa,Bb} \right);\left( {Aa;bB} \right);\left( {Aa,bb} \right)} \right\}\)
Vậy\({\rm{ }}P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{2}{8} = \frac{1}{4}.\)
Lời giải
Ta có:\(\Omega = \{ 22;24;29;42;44;49;92;94;99\} \). Số phần tử của \(\Omega \) là 9.
a) Ta có: \(A = \left\{ {24;44;92} \right\}\). Tập hợp \(A\) có 3 phần tử. Vậy \(P\left( A \right) = \frac{3}{9} = \frac{1}{3}\).
b) Ta có: \(B = \left\{ {29} \right\}\). Tập hợp \(B\) có 1 phần tử. Vậy\(P\;\left( B \right) = \frac{1}{9}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
