Câu hỏi:

01/02/2026 12 Lưu

Cho hai túi I và II, mỗi túi chứa 3 tấm thẻ được ghi các số 2; 4 ; 9. Rút ngẫu nhiên từ mỗi túi ra một tấm thẻ và ghép thành số có hai chữ số với chũ số trên tấm thẻ rút từ túi I là chữ số hàng chục. Tính xác suất các biến cố sau:

a) \(A\): “Số tạo thành chia hết cho 4”;

b) \(B\): “Số tạo thành là số nguyên tố”.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có:\(\Omega = \{ 22;24;29;42;44;49;92;94;99\} \). Số phần tử của \(\Omega \) là 9.

a) Ta có: \(A = \left\{ {24;44;92} \right\}\). Tập hợp \(A\) có 3 phần tử. Vậy \(P\left( A \right) = \frac{3}{9} = \frac{1}{3}\).

b) Ta có: \(B = \left\{ {29} \right\}\). Tập hợp \(B\) có 1 phần tử. Vậy\(P\;\left( B \right) = \frac{1}{9}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có bảng sau:

            Dạng hạt

 

Màu hạt

\(BB\)

\(Bb\)

\(bB\)

\(bb\)

\(AA\)

\(\left( {AA;BB} \right)\)

\(\left( {AA;Bb} \right)\)

\(\left( {AA;bB} \right)\)

\(\left( {AA;bb} \right)\)

\(Aa\)

\[\left( {Aa;BB} \right)\]

\(\left( {Aa;Bb} \right)\)

\(\left( {Aa;bB} \right)\)

\(\left( {Aa;bb} \right)\)

Gọi \(E\) là biến cố “cây con có hạt vàng nhăn”. Ta có: \[E = \left\{ {\left( {AA,bb} \right);\left( {Aa;bb} \right)} \right\}\].

Có hai kết quả thuận lợi cho biến cố \(E\).

\(\Omega = \left\{ {\left( {AA,BB} \right);\left( {AA,Bb} \right);\left( {AA;bB} \right);\left( {AA,bb} \right);\left( {Aa,BB} \right);\left( {Aa,Bb} \right);\left( {Aa;bB} \right);\left( {Aa,bb} \right)} \right\}\)

Vậy\({\rm{ }}P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{2}{8} = \frac{1}{4}.\)

Lời giải

a) Kí hiệu \(T\) là màu trắng, là màu đỏ và \(V\)là màu vàng.

Không gian mẫu . Số kết quả có thể xảy ra là \(n\left( \Omega \right) = 4\)

b) Vì các quả bóng có cùng kích thước và khối lượng nên 4 kết quả trên có cùng khả năng xảy ra.

Chỉ có một kết quả thuận lợi cho biến cố A là nên \(n\left( A \right) = 1\).

Xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{1}{4}\).

Các kết quả thuận lợi cho biến cố B là \(\left( {{\rm{T}},{\rm{B}}} \right)\)\(\left( {B,V} \right)\) nên \(n\left( B \right) = 2\).

Xác suất của biến cố B là \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{2}{4} = \frac{1}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP