Câu hỏi:

02/02/2026 15 Lưu

Cho phương trình \[\left( {2m - 3} \right){x^2} - 2\left( {m - 2} \right)x - 1 = 0\] với \[m\] là tham số. Khi nào

a) Giải phương trình với \[m = 2\]

b) Chứng minh rằng với mọi \[m \in \mathbb{R}\], phương trình luôn có nghiệm.

c) Với giá trị nào của \[m\] thì phương trình có hai nghiệm phân biệt.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Với \[m = 2\], phương trình đã cho trở thành \[{x^2} - 1 = 0\] hay \[x =  \pm 1\]

b) Xét hai trường hợp

TH1: Với \[m = \frac{3}{2}\] phương trình đã cho trở thành: \[x - 1 = 0\] hay \[x = 1\]

TH2: Với \[m \ne \frac{3}{2}\] phương trình \[\left( {2m - 3} \right){x^2} - 2\left( {m - 2} \right)x - 1 = 0\] là một phương trình bậc hai và có \[\Delta ' = {\left( {m - 2} \right)^2} + \left( {2m - 3} \right) = {\left( {m - 1} \right)^2} \ge 0,\,\forall m \in \mathbb{R}\]

Suy ra phương trình luôn có nghiệm với mọi \[m \in \mathbb{R}\]

c) Phương trình có hai nghiệm phân biệt khi và chỉ khi:

\[m \ne \frac{3}{2}\] và \[{\left( {m - 1} \right)^2} > 0\]

\[m \ne \frac{3}{2}\] và \[m \ne 1\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Vẽ đồ thị parabol \(\left( P \right):y = 2{x^2}.\)

Bảng giá trị:

\(x\)

\( - 2\)

\( - 1\)

\(0\)

\(1\)

\(2\)

\(y = 2{x^2}\)

\(8\)

\(2\)

\(0\)

\(2\)

\(8\)

Đồ thị:

Trong mặt phẳng tọa độ \[Oxy,\] (ảnh 1)

b) Gọi \(M\left( {a;b} \right)\) là điểm cần tìm với \(a \ne 0,\,b \ne 0\).

Vì \(M\) có tung độ gấp hai lần hoành độ nên \(b = 2a\)

Khi đó: \(M\left( {a,2a} \right)\)

Vì \(M\left( {a,2a} \right) \in \left( P \right):y = 2{x^2}\) nên:

\(\begin{array}{l}2a = 2{a^2}\\2{a^2} - 2a = 0\\{a^2} - a = 0\\a\left( {a - 1} \right) = 0\end{array}\)

\(a = 0\) và \(a = 1\)

Vì \(a \ne 0\) nên ta chọn \(a = 1\). Vậy \(M\left( {1;2} \right)\)

Lời giải

Gọi số thứ nhất là \(x\), số thứ hai là \(y\).

Theo đề bài tổng của hai số đó bằng 17 đơn vị nên ta có phương trình \(x + y = 17\). \[\left( 1 \right)\]

Số thứ nhất tăng thêm 3 đơn vị, số thứ hai tăng thêm 2 đơn vị thì tích của chúng bằng 105 đơn vị nên ta có phương trình \((x + 3)(y + 2) = 105\). \[\left( 2 \right)\]

Từ \((1)\) và \((2)\), ta có hệ phương trình

\(\left\{ {\begin{array}{*{20}{l}}{x + y = 17}\\{(x + 3)(y + 2) = 105}\end{array}} \right.\)

Rút \(y\) từ \((1)\) thế vào \((2)\) và thu gọn, ta được

\({x^2} - 16x + 48 = 0.\)

Giải phương trình ta được \({x_1} = 12\) (thỏa mãn) và \({x_2} = 4\) (thỏa mãn).

Vậy nếu số thứ nhất là 12 thì số thứ hai là 5; nếu số thứ nhất là 4 thì số thứ hai là 12.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP