Cho phương trình \({x^2} - 2(m - 1)x + m - 3 = 0\) (\(m\) là tham số).
a) Chứng minh phương trình luôn có hai nghiệm phân biệt.
b) Tìm một hệ thức liên hệ giữa hai nghiệm của phương trình đã cho mà không phụ thuộc vào \(m\).
c) Tìm giá trị nhỏ nhất của \(P = x_1^2 + x_2^2\) (với \[{x_1}\], \[{x_2}\] là nghiệm của phương trình đã cho)
Cho phương trình \({x^2} - 2(m - 1)x + m - 3 = 0\) (\(m\) là tham số).
a) Chứng minh phương trình luôn có hai nghiệm phân biệt.
b) Tìm một hệ thức liên hệ giữa hai nghiệm của phương trình đã cho mà không phụ thuộc vào \(m\).
c) Tìm giá trị nhỏ nhất của \(P = x_1^2 + x_2^2\) (với \[{x_1}\], \[{x_2}\] là nghiệm của phương trình đã cho)
Quảng cáo
Trả lời:
a)
Vậy phương trình đã cho luôn có hai nghiệm phân biệt.
b) Theo hệ thức Viète, ta có: \[\left\{ \begin{array}{l}{x_1} + {x_2} = 2(m - 1)\\{x_1}{x_2} = m - 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_1} + {x_2} = 2m - 2\\2{x_1}{x_2} = 2m - 6\end{array} \right.\]
\( \Leftrightarrow {x_1} + {x_2} - 2{x_1}{x_2} - 4 = 0\) không phụ thuộc vào \(m\).
c) \(P = x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 4{\left( {m - 1} \right)^2} - 2\left( {m - 3} \right)\)
\( = {\left( {2m - \frac{5}{2}} \right)^2} + \frac{{15}}{4} \ge \frac{{15}}{4}\), \(\forall m\)
Do đó \({P_{\min }} = \frac{{15}}{4}\) và dấu xảy ra khi \(2m - \frac{5}{2} = 0 \Leftrightarrow m = \frac{5}{4}\)
Vậy \({P_{\min }} = \frac{{15}}{4}\) với \(m = \frac{5}{4}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) \[\Delta = {\left( {2m - 3} \right)^2} > 0 \Leftrightarrow m \ne \frac{3}{2}\]
Ta có: \[\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{1 - 2m}}{2}\,\,\,\,\,\,\,\,\left( 1 \right)\\3{x_1} - 4{x_2} = 11\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\\{x_1}{x_2} = \frac{{m - 1}}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right)\end{array} \right.\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] tìm \[{x_1}\], \[{x_2}\] rồi thay vào \[\left( 3 \right)\].
Chú ý: Có thể tìm \[{x_1}\], \[{x_2}\] từ phương trình đã cho rồi thay vào \[\left( 2 \right)\].
b) Phương trình có hai nghiệm đều âm khi
\[\left\{ \begin{array}{l}\Delta \ge 0\\S < 0\\P < 0\end{array} \right.\] giải ra được \[m > 1\].
c) Khử \[m\] từ \[\left( 1 \right)\] và \[\left( 3 \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.