Câu hỏi:

03/02/2026 6 Lưu

Cho phương trình \({x^2} - 2(m - 1)x + m - 3 = 0\) (\(m\) là tham số).

a) Chứng minh phương trình luôn có hai nghiệm phân biệt.

b) Tìm một hệ thức liên hệ giữa hai nghiệm của phương trình đã cho mà không phụ thuộc vào \(m\).

c) Tìm giá trị nhỏ nhất của \(P = x_1^2 + x_2^2\) (với \[{x_1}\], \[{x_2}\] là nghiệm của phương trình đã cho)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Δ'=m121.m3=m23m+4=m322+74>0 m

Vậy phương trình đã cho luôn có hai nghiệm phân biệt.

b) Theo hệ thức Viète, ta có: \[\left\{ \begin{array}{l}{x_1} + {x_2} = 2(m - 1)\\{x_1}{x_2} = m - 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_1} + {x_2} = 2m - 2\\2{x_1}{x_2} = 2m - 6\end{array} \right.\]

\( \Leftrightarrow {x_1} + {x_2} - 2{x_1}{x_2} - 4 = 0\) không phụ thuộc vào \(m\).

c) \(P = x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 4{\left( {m - 1} \right)^2} - 2\left( {m - 3} \right)\)

\( = {\left( {2m - \frac{5}{2}} \right)^2} + \frac{{15}}{4} \ge \frac{{15}}{4}\), \(\forall m\)

Do đó \({P_{\min }} = \frac{{15}}{4}\) và dấu  xảy ra khi \(2m - \frac{5}{2} = 0 \Leftrightarrow m = \frac{5}{4}\)

Vậy \({P_{\min }} = \frac{{15}}{4}\) với \(m = \frac{5}{4}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \[\Delta  = {\left( {2m - 3} \right)^2} > 0 \Leftrightarrow m \ne \frac{3}{2}\]

Ta có: \[\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{1 - 2m}}{2}\,\,\,\,\,\,\,\,\left( 1 \right)\\3{x_1} - 4{x_2} = 11\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\\{x_1}{x_2} = \frac{{m - 1}}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right)\end{array} \right.\]

Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] tìm \[{x_1}\], \[{x_2}\] rồi thay vào \[\left( 3 \right)\].

Chú ý: Có thể tìm \[{x_1}\], \[{x_2}\] từ phương trình đã cho rồi thay vào \[\left( 2 \right)\].

b) Phương trình có hai nghiệm đều âm khi

\[\left\{ \begin{array}{l}\Delta  \ge 0\\S < 0\\P < 0\end{array} \right.\] giải ra được \[m > 1\].

c) Khử \[m\] từ \[\left( 1 \right)\] và \[\left( 3 \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP