Cho quãng đường từ địa điểm A đến địa điểm B là \(90\) km. Lúc 6 giờ, một xe máy đi từ A để tới B. Lúc 6 giờ 30 phút cùng ngày, một ô tô cũng đi từ A để tới B với vận tốc lớn hơn vận tốc xe máy \(15\) km/h (Hai xe chạy trên cùng một con đường đã cho). Hai xe nói trên đều đến B cùng lúc. Phương trình của bài toán để tính vận tốc của xe máy là
Quảng cáo
Trả lời:
Chọn B
Xe máy đi trước ô tô thời gian là 6 giờ 30 phút – 6 giờ = 30 phút \( = \frac{1}{2}\,\,\left( {\rm{h}} \right).\)
Gọi vận tốc của xe máy là \(x\)(km/h) \(\left( {x > 0} \right)\)
Vì vận tốc ô tô lớn hơn vậy tốc xe máy \(15\) km/h nên vận tốc ô tô là \(x + 15\) (km/h)
Thời gian xe máy đi hết quãng đường AB là: \(\frac{{90}}{x}\) (h)
Thời gian ô tô đi hết quãng đường AB là: \(\frac{{90}}{{x + 15}}\) (h)
Do xe máy đi trước ô tô \(\frac{1}{2}{\rm{h}}\) và hai xe đều tới B cùng một lúc nên ta có phương trình \(\frac{{90}}{x} - \frac{1}{2} = \frac{{90}}{{x + 15}}.\)
Vậy phương trình cần tìm là \(\frac{{90}}{x} - \frac{1}{2} = \frac{{90}}{{x + 15}}.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
Phương trình \({x^2} - 2(m + 1)x + {m^2} - 3 = 0\) vô nghiềm khi và chỉ khi
\({\Delta ^\prime } < 0 \Leftrightarrow {(m + 1)^2} - \left( {{m^2} - 3} \right) < 0 \Leftrightarrow 2m + 4 < 0 \Leftrightarrow m < - 2\)
Câu 2
Lời giải
Chọn A
Ta có: \(\Delta ' = {\left( {\sqrt {11} } \right)^2} - 2.3 = 5 > 0\).
Vậy phương trình có hai nghiệm phân biệt.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.